Patents by Inventor Hiromitsu Nagayasu

Hiromitsu Nagayasu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11427916
    Abstract: A surface treatment apparatus includes a treatment vessel including a treatment space in which a metal component is disposed, a spray nozzle that supplies mist of a non-chromate conversion treatment liquid to the treatment space, and a circulation device that collects the non-chromate conversion treatment liquid from the treatment space and supplies the non-chromate conversion treatment liquid to the spray nozzle.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 30, 2022
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroaki Mikawa, Hiromitsu Nagayasu, Shigehiro Sugiyama, Takumi Sato, Kohei Kawasaki, Yusuke Takagi
  • Publication number: 20210299716
    Abstract: A cleaning apparatus 200 is provided with: a treatment tank 10, which defines a treatment space 15 by the inner surfaces (11a, 11b) thereof and on the inner surfaces of which a water-repellent coating has been applied; a cleaning liquid supply device with nozzles 24a (cleaning liquid spray nozzles) for spraying, into the treatment space 15, a mist of a cleaning liquid CL for cleaning surface treatment processing liquid PL adhering to the surface of a metal part S and/or processing liquid PL adhering to the inner surface; and a drying device, which comprises an air compressor 23a and is for supplying drying air compressed by the air compressor 23a to the treatment space 15.
    Type: Application
    Filed: April 15, 2019
    Publication date: September 30, 2021
    Inventors: Takumi SATO, Hiroaki MIKAWA, Hiromitsu NAGAYASU, Kohei KAWASAKI, Taisuke MIYAZAKI, Yuuichi OKUZAKI
  • Patent number: 10835862
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on a downstream side of the SOx removal equipment for reducing the sulfur oxides that remain in the flue gas and for decreasing a gas temperature, CO2 recovery equipment which includes a CO2 absorber, and an absorption liquid regenerator, and mist generation material reduction equipment for reducing a mist generation material which is a generation source of mist that is generated in the CO2 absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment are included.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 17, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Patent number: 10668427
    Abstract: An acid gas recovery method includes removing acid gas from a target gas by bringing the target gas containing the acid gas into gas-liquid contact with an absorbent amine solution and causing the absorbent amine solution to absorb the acid gas; regenerating the absorbent amine solution by releasing the acid gas from the absorbent amine solution that has absorbed the acid gas; causing a chelate resin to adsorb iron ions from the absorbent amine solution by causing the absorbent amine solution to pass through the chelate resin; causing a regenerant solution to pass through a chelate resin having iron ions adsorbed thereon; regenerating the chelate resin and obtaining a regenerant solution containing the iron ions and quantitatively measuring the iron ions in the regenerant solution containing the iron ions and calculating a concentration of iron ions in the absorbent amine solution.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 2, 2020
    Assignee: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Takuya Hirata, Shinichi Okamoto, Hiromitsu Nagayasu, Masaru Chiyomaru, Tatsuya Tsujiuchi
  • Patent number: 10610820
    Abstract: Provided are: a wet desulfurization apparatus 13 which removes sulfur oxides in flue gas 12A from a boiler 11; a mist collection/agglomeration apparatus 14 which is provided on a downstream side of the desulfurization apparatus 13 and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus 13 to be bonded together and have bloated particle sizes; a CO2 recovery apparatus 18 constituted by a CO2 absorption tower 16 having a CO2 absorption unit 16A which removes CO2 contained in flue gas 12D by being brought into contact with a CO2 absorbent and an absorbent regeneration tower 17 which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit 16C which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit 16A.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: April 7, 2020
    Assignees: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Patent number: 10427093
    Abstract: A CO2 recovery apparatus is provided with: a CO2 absorption tower for bringing exhaust gas into contact with a CO2 absorbing liquid and making the CO2 absorbing liquid absorb the CO2 contained in the exhaust gas; a CO2 absorbing liquid regeneration tower for heating the CO2 absorbing liquid with steam and releasing CO2 from the CO2 absorbing liquid and regenerating the CO2 absorbing liquid; a flowmeter for determining the flow rates of the exhaust gas introduced into the CO2 absorption tower; and a control unit for classifying the flow rates of the exhaust gas into multiple flow rate ranges, and controlling the flow rate of the CO2 absorbing liquid supplied to the CO2 absorption tower and the flow rate of steam supplied to the CO2 absorbing liquid regeneration tower on the basis of prescribed set load values which have been previously established in accordance with the multiple flow rate ranges.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: October 1, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.
    Inventors: Takuya Hirata, Hiroshi Tanaka, Hiromitsu Nagayasu, Yoshiki Sorimachi, Daisuke Shimada, Tsuyoshi Oishi
  • Publication number: 20190255483
    Abstract: Provided are: a wet desulfurization apparatus 13 which removes sulfur oxides in flue gas 12A from a boiler 11; a mist collection/agglomeration apparatus 14 which is provided on a downstream side of the desulfurization apparatus 13 and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus 13 to be bonded together and have bloated particle sizes; a CO2 recovery apparatus 18 constituted by a CO2 absorption tower 16 having a CO2 absorption unit 16A which removes CO2 contained in flue gas 12D by being brought into contact with a CO2 absorbent and an absorbent regeneration tower 17 which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit 16C which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit 16A.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Applicants: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Publication number: 20190233944
    Abstract: A surface treatment apparatus includes a treatment vessel including a treatment space in which a metal component is disposed, a spray nozzle that supplies mist of a non-chromate conversion treatment liquid to the treatment space, and a circulation device that collects the non-chromate conversion treatment liquid from the treatment space and supplies the non-chromate conversion treatment liquid to the spray nozzle.
    Type: Application
    Filed: June 12, 2017
    Publication date: August 1, 2019
    Inventors: Hiroaki MIKAWA, Hiromitsu NAGAYASU, Shigehiro SUGIYAMA, Takumi SATO, Kohei KAWASAKI, Yusuke TAKAGI
  • Patent number: 10328383
    Abstract: A wet desulfurization apparatus which removes sulfur oxides in flue gas from a boiler 11 includes a mist collection/agglomeration apparatus which is provided on a downstream side of the desulfurization apparatus and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus to be bonded together and have bloated particle sizes; a CO2 recovery apparatus constituted by a CO2 absorption tower having a CO2 absorption unit which removes CO2 contained in flue gas by being brought into contact with a CO2 absorbent and an absorbent regeneration tower which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: June 25, 2019
    Assignees: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Patent number: 10151540
    Abstract: There is provided a large-sized reboiler that can achieve space saving and reduction in plant cost. Specifically, there is provided a large-sized reboiler comprising a vessel of which a liquid is supplied from a lower part and a vaporized gas is discharged from an upper part; and a heat transfer tube group arranged in such a manner that a void penetrating in the up-and-down direction is formed in the vessel, wherein a maximum length of a cross-sectional figure of a flow path for the liquid exceeds 2 m, and the void occupies 5 to 10% of an area of the cross-sectional figure of the flow path.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: December 11, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.
    Inventors: Yoshiyuki Kondo, Hiromitsu Nagayasu, Takashi Kamijo, Osamu Miyamoto
  • Patent number: 10137415
    Abstract: Provided are a reclaimer 51 that introduces, through a branch line L11, and stores a part 17a of an absorbent 17 regenerated in a regenerator of a recovery unit that recovers CO2 or H2S in a gas, a first alkaline agent supply section 53A that supplies an alkaline agent 52 to the reclaimer 51, a heating section 54 that heats the absorbent 17 stored in the reclaimer 51 and to which the alkaline agent 52 has been mixed to obtain recovered vapor 61, a first vapor cooler 55A that cools the recovered vapor 61 discharged from the reclaimer 51 through a vapor line L12, a first gas-liquid separator 56A that separates a coexisting substance 62 entrained in the cooled recovered vapor 61 into a recovered absorption agent vapor (gas) 17b and the liquid coexisting substance 62 by gas-liquid separation, and an introduction line L13 that introduces the recovered absorption agent vapor 17b separated in the first gas-liquid separator 56A into a regenerator 20.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: November 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Shinsuke Nakatani
  • Patent number: 10137407
    Abstract: An absorbent is prepared by dissolving in water 1) monoethanolamine (MEA) and 2) a primary amine represented by the following formula (1) and having high steric hindrance. Releasability of CO2 or H2S during regeneration of the absorbent is thereby improved, and the amount of water vapor used during regeneration of the absorbent in a facility for recovering CO2 or H2S can be reduced. R1 to R3: H or a hydrocarbon group having 1 to 3 carbon atoms, at least one of R1 to R3 being a hydrocarbon.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: November 27, 2018
    Assignees: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Tsuyoshi Oishi, Takashi Kamijo
  • Publication number: 20180318760
    Abstract: An acid gas recovery method includes removing acid gas from a target gas by bringing the target gas containing the acid gas into gas-liquid contact with an absorbent amine solution and causing the absorbent amine solution to absorb the acid gas; regenerating the absorbent amine solution by releasing the acid gas from the absorbent amine solution that has absorbed the acid gas; causing a chelate resin to adsorb iron ions from the absorbent amine solution by causing the absorbent amine solution to pass through the chelate resin; causing a regenerant solution to pass through a chelate resin having iron ions adsorbed thereon; regenerating the chelate resin and obtaining a regenerant solution containing the iron ions and quantitatively measuring the iron ions in the regenerant solution containing the iron ions and calculating a concentration of iron ions in the absorbent amine solution.
    Type: Application
    Filed: October 20, 2016
    Publication date: November 8, 2018
    Applicant: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Takuya Hirata, Shinichi Okamoto, Hiromitsu Nagayasu, Masaru Chiyomaru, Tatsuya Tsujiuchi
  • Patent number: 10065149
    Abstract: A gas-liquid contactor is obtained by including a header pipe for supplying washing water, in a direction perpendicular to a vertical axis direction, the header pipe being disposed above a packed bed contacting section through which exhaust gas moves upward and passes; and spray nozzles for discharging spray water, the nozzles being disposed, in an upward orientation, with predetermined intervals on the header pipe. The spray water that has been discharged from the spray nozzles is supplied at a low liquid flow rate. The discharged spray water becomes a liquid film and falls downward along the surface of the header pipe, and then falls and spreads in the packed bed contacting section, so that the washing water is made to contact the exhaust gas moving upward through the packed bed contacting section. Accordingly, the washing water is used to clear and remove water-soluble substances contained in the exhaust gas.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: September 4, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINEERING LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Takahiko Endo, Shimpei Kawasaki
  • Patent number: 10016718
    Abstract: When CO2 gas is absorbed by using an absorbent circulating in an absorption tower and an absorbent regeneration tower, a first sampling part at which a lean solution sample is collected in the vicinity of an inlet for a lean solution supply line in the absorption tower, a second sampling part at which a rich solution sample is collected in the vicinity of an outlet for a rich solution supply line in the absorption tower, and an analyzing device which analyzes the collected lean solution sample and rich solution sample are provided; the lean solution sample at the first sampling part and the rich solution sample at the second sampling part are collected, respectively, in the same time period, and concentrations of CO2 gas in the lean solution sample and the rich solution sample are measured, and then the gas absorbing/regenerating operation is controlled based on measured results.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: July 10, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shinichi Okamoto, Masaru Chiyomaru, Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Tsuyoshi Oishi, Daisuke Shimada
  • Patent number: 10010828
    Abstract: A filtration membrane device which uses a filter to collect solid contents remaining in a branched lean solution cleans the filter by using a low-concentration CO2 absorption liquid circulating within the system as cleaning water (containing the absorption liquid); rough cleaning, which returns the low-concentration CO2 absorption liquid used for cleaning to a lean solution supply line, is performed; the filter is finish-cleaned by cleaning water from outside the system which does not include the CO2 absorption liquid; the CO2 absorption liquid which is adhered to the solid contents is washed and removed; finish-cleaning water which includes the CO2 absorption liquid is returned to the lean solution supply line the moisture content within the system is maintained at a prescribed value by adjusting the water balance in an absorption tower and the concentration of the CO2 absorption liquid which circulates within the system is kept at a prescribed concentration.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: July 3, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Hiroshi Tanaka, Tomoki Noborisato, Tsuyoshi Oishi
  • Patent number: 9919267
    Abstract: A gas-liquid contactor includes: a plurality of packing material sections through which exhaust gas passes; and a plurality of liquid distributors provided upon each of the plurality of packing material sections, dispersing a CO2 absorption liquid caused to come in contact with the exhaust gas, and supplying the CO2 absorption liquid to the plurality of packing material sections. The plurality of packing material sections include a first packing material layer and a second packing material layer that have provided therein flow paths (111a, 112a) for the CO2 absorption fluid that each extend in prescribed directions (D2, D3). The first packing material layer and the second packing material layer are characterized by being laminated such that the directions (D2, D3) of extension of the flow paths (111a, 112a) in the flow direction (D1) for the exhaust gas are different from each other.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: March 20, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Yoshinori Kajiya
  • Patent number: 9914088
    Abstract: A CO2 recovery unit for recovery and removal of CO2 in a CO2-containing flue gas using a CO2-absorbent within a CO2 absorber is provided. The CO2 absorber includes a CO2-absorbing unit for the absorption of CO2 in a CO2-containing flue gas, a main water rinsing unit that is provided on a gas flow downstream side of the CO2-absorbing unit and that uses rinsing water to recover the accompanying CO2-absorbent while cooling decarbonated flue gas, and a preliminary water rinsing unit provided between the CO2-absorbing unit and the main water rinsing unit. A portion of the rinsing water containing the CO2-absorbent that is circulated in the main water rinsing unit is withdrawn and is subjected to preliminary water rinsing in the preliminary water rinsing unit. The preliminary rinsing water is allowed to meet with a CO2-absorbent while allowing the rinsing water to directly flow down on the CO2-absorbing unit side.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: March 13, 2018
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Tsuyoshi Oishi, Takashi Kamijo
  • Patent number: 9901872
    Abstract: An air pollution control system includes CO2 absorber that removes CO2, and an absorbent regenerator that releases CO2 from the amine absorbent. The CO2 absorber is equipped with a CO2 absorption unit that absorbs CO2 in the flue gas by the amine absorbent (lean solution), and a water-repellent filter unit that is provided on an upper part (gas flow downstream) side of the CO2 absorption unit and collects the mist amine absorbent accompanied by the CO2-free flue gas. The mist amine accompanied by the CO2-free flue gas is collected.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiromitsu Nagayasu, Takashi Kamijo, Yuichiro Sato, Takuya Hirata, Hiroshi Tanaka, Kouji Horizoe
  • Patent number: 9901875
    Abstract: Provided are a reclaimer that introduces a part of an absorbent that has absorbed CO2 or H2S in a flue gas through an introduction line and stores the absorbent, a heating section that heats the absorbent stored in the reclaimer to obtain recovered vapor, and a mixing tank disposed on the introduction line through which the absorbent is introduced into the reclaimer, and which introduces an absorbent (lean solution) and an alkaline agent for mixing thereof.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Shinsuke Nakatani