Patents by Inventor Hiromu MAIE

Hiromu MAIE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11573190
    Abstract: A calibration method for an X-ray measuring device includes mounting a calibration tool on a rotating table, identifying centroid positions from an output of an X-ray image detector, calculating projection transformation matrixes from the centroid positions and known relative positional intervals, repeating to identify the centroid positions from the output of the X-ray image detector and to calculate the projection transformation matrixes from the centroid positions and known relative positional intervals while the rotating table is rotated twice or more by a predetermined angle, and calculating a rotation center position of the rotating table on the basis of the projection transformation matrixes. The calibration method thereby allows easy calculation of the rotation center position of the rotating table on which an object to be measured is mounted in a rotatable manner, with the simple process.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: February 7, 2023
    Assignee: MITUTOYO CORPORATION
    Inventors: Masato Kon, Hiromu Maie, Seiji Sasaki, Jyota Miyakura
  • Patent number: 11435560
    Abstract: The present invention provides a lens substrate stacking position calculating apparatus capable of calculating a stacking position at which the number of lens sets whose optical axis deviation falls within an allowable range is maximized, when a plurality of wafer lens arrays are bonded together even if the position of each lens formed on a wafer substrate is deviated between wafer lens arrays to be stacked. The lens substrate stacking position calculating apparatus calculates the positional relationship of two or more transparent substrates to be stacked when the two or more transparent substrates on which a plurality of lenses are two-dimensionally arranged are stacked to form a plurality of lens sets each including two or more lenses. A position of each lens is specified in advance in a common coordinate system.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: September 6, 2022
    Assignee: MITUTOYO CORPORATION
    Inventors: Kazuhiko Hidaka, Hiromu Maie, Jyota Miyakura
  • Patent number: 11344276
    Abstract: A calibration method of an X-ray measuring device includes: mounting a calibration tool 102 on a rotating table 120; a moving position acquisition step of parallelly moving a position of an j-th sphere 106 with respect to a position of a first sphere 106, irradiating the calibration tool 102 with an X-ray 118, and acquiring, form an output of an X-ray image detector 124, a moving position Mj where the magnitude of a differential position Erjofa centroid position ImDisjh_Sphr_j of a projected image of the j(2£j£N)-th sphere 106 with respect to a centroid position ImDis1_Sphr_1 of a projected image of the first sphere 106 becomes equal to or less than a specified value Vx; a relative position calculation step of performing the moving position acquisition step on the remaining spheres; a feature position calculation step; a transformation matrix calculation step; a rotation detection step; a position calculation step; and a center position calculation step.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: May 31, 2022
    Assignee: MITUTOYO CORPORATION
    Inventors: Masato Kon, Hiromu Maie, Seiji Sasaki, Jyota Miyakura
  • Patent number: 11346660
    Abstract: A calibration method of an X-ray measuring device includes: a front-stage feature position calculation step of parallelly moving spheres disposed in N places a plurality of times, and identifying centroid positions ImPos(1 to Q)_Dis(1 to M)_Sphr_(1 to N) of projected images of the spheres in the N places; an individual matrix calculation step of calculating an individual projection matrix PPj (j=1 to Q) for each of the spheres; an individual position calculation step of calculating moving positions Xb of the spheres on the basis of the individual projection matrix PPj (j=1 to Q); a coordinate integration step of calculating specific relative position intervals X(1 to N) of the spheres; a rear-stage feature position calculation step; a transformation matrix calculation step of calculating a projective transformation matrix Hk (k=1 to Q); a rotation detection step; a position calculation step; and a center position calculation step.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: May 31, 2022
    Assignee: MITUTOYO CORPORATION
    Inventors: Masato Kon, Hiromu Maie, Seiji Sasaki, Jyota Miyakura
  • Publication number: 20210404976
    Abstract: A calibration method for an X-ray measuring device includes mounting a calibration tool on a rotating table, identifying centroid positions from an output of an X-ray image detector, calculating projection transformation matrixes from the centroid positions and known relative positional intervals, repeating to identify the centroid positions from the output of the X-ray image detector and to calculate the projection transformation matrixes from the centroid positions and known relative positional intervals while the rotating table is rotated twice or more by a predetermined angle, and calculating a rotation center position of the rotating table on the basis of the projection transformation matrixes. The calibration method thereby allows easy calculation of the rotation center position of the rotating table on which an object to be measured is mounted in a rotatable manner, with the simple process.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 30, 2021
    Applicant: MITUTOYO CORPORATION
    Inventors: Masato KON, Hiromu MAIE, Seiji SASAKI, Jyota MIYAKURA
  • Patent number: 11040443
    Abstract: A Z slider includes a rotating shaft capable of at least one revolution centered on a rotation axis, in a state Where the rotating shaft supports a measurement head that is connected to a plurality of cables; a ? axis drive motor that causes the rotating shaft, to perform normal rotation in a clockwise direction and reverse rotation in a counterclockwise direction; and an oscillating link that oscillates in a state of contact with the rotating shaft when the rotating shaft is performing normal rotation in the clockwise direction and limits normal rotation in the clockwise direction that is equal to or greater than a predetermined angle, and that oscillates in a state of contact with the rotating shaft when the rotating shaft is performing reverse rotation in the counterclockwise direction and limits reverse rotation in the counterclockwise direction that is equal to or greater than a predetermined angle.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 22, 2021
    Assignee: MITUTOYO CORPORATION
    Inventors: Hiromu Maie, Tomohiro Arizono
  • Publication number: 20210072022
    Abstract: A calibration method of an X-ray measuring device includes: a front-stage feature position calculation step of parallelly moving spheres disposed in N places a plurality of times, and identifying centroid positions ImPos(1 to Q)_Dis(1 to M)_Sphr_(1 to N) of projected images of the spheres in the N places; an individual matrix calculation step of calculating an individual projection matrix PPj (j=1 to Q) for each of the spheres; an individual position calculation step of calculating moving positions Xb of the spheres on the basis of the individual projection matrix PPj (j=1 to Q); a coordinate integration step of calculating specific relative position intervals X(1 to N) of the spheres; a rear-stage feature position calculation step; a transformation matrix calculation step of calculating a projective transformation matrix Hk (k=1 to Q); a rotation detection step; a position calculation step; and a center position calculation step.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 11, 2021
    Applicant: MITUTOYO CORPORATION
    Inventors: Masato KON, Hiromu MAIE, Seiji SASAKI, Jyota MIYAKURA
  • Publication number: 20210068777
    Abstract: A calibration method of an X-ray measuring device includes: mounting a calibration tool on a rotating table; a moving position acquisition step of parallelly moving a position of an j-th sphere with respect to a position of a first sphere, irradiating the calibration tool with an X-ray, and acquiring, form an output of an X-ray image detector, a moving position Mj where the magnitude of a differential position Erj of a centroid position ImDisjh_Sphr_j of a projected image of the j(2?j?N)-th sphere with respect to a centroid position ImDis1_Sphr_1 of a projected image of the first sphere becomes equal to or less than a specified value Vx; a relative position calculation step of performing the moving position acquisition step on the remaining spheres a feature position calculation step; a transformation matrix calculation step; a rotation detection step; a position calculation step; and a center position calculation step.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 11, 2021
    Applicant: MITUTOYO CORPORATION
    Inventors: Masato KON, Hiromu MAIE, Seiji SASAKI, Jyota MIYAKURA
  • Publication number: 20200271901
    Abstract: The present invention provides a lens substrate stacking position calculating apparatus capable of calculating a stacking position at which the number of lens sets whose optical axis deviation falls within an allowable range is maximized, when a plurality of wafer lens arrays are bonded together even if the position of each lens formed on a wafer substrate is deviated between wafer lens arrays to be stacked. The lens substrate stacking position calculating apparatus calculates the positional relationship of two or more transparent substrates to be stacked when the two or more transparent substrates on which a plurality of lenses are two-dimensionally arranged are stacked to form a plurality of lens sets each including two or more lenses. A position of each lens is specified in advance in a common coordinate system.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 27, 2020
    Applicant: MITUTOYO CORPORATION
    Inventors: Kazuhiko HIDAKA, Hiromu MAIE, Jyota MIYAKURA
  • Publication number: 20190193264
    Abstract: A Z slider includes a rotating shaft capable of at least one revolution centered on a rotation axis, in a state Where the rotating shaft supports a measurement head that is connected to a plurality of cables; a ? axis drive motor that causes the rotating shaft, to perform normal rotation in a clockwise direction and reverse rotation in a counterclockwise direction; and an oscillating link that oscillates in a state of contact with the rotating shaft when the rotating shaft is performing normal rotation in the clockwise direction and limits normal rotation in the clockwise direction that is equal to or greater than a predetermined angle, and that oscillates in a state of contact with the rotating shaft when the rotating shaft is performing reverse rotation in the counterclockwise direction and limits reverse rotation in the counterclockwise direction that is equal to or greater than a predetermined angle.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Applicant: MITUTOYO CORPORATION
    Inventors: Hiromu MAIE, Tomohiro ARIZONO
  • Patent number: 10295337
    Abstract: A surface texture measuring apparatus includes an X axis displacement mechanism and a Y axis displacement mechanism displacing a measurable object having an interior wall along an XY plane; a measurement sensor measuring a surface texture of the interior wall without contact; a Z axis displacement mechanism displacing the measurement sensor in a Z axis direction orthogonal to the XY plane and bringing the measurement sensor to face the interior wall; a W axis displacement mechanism displacing the measurement sensor facing the interior wall in a normal direction of the interior wall; and a ? axis displacement mechanism displacing the measurement sensor facing the interior wall along the interior wall.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: May 21, 2019
    Assignee: MITUTOYO CORPORATION
    Inventors: Sadayuki Matsumiya, Shuichi Kamiyama, Hidemitsu Asano, Hiroshi Sakai, Hiromu Maie, Yoshihiko Takahashi, Masanori Arai, Ken Motohashi
  • Publication number: 20170248415
    Abstract: A surface texture measuring apparatus includes an X axis displacement mechanism and a Y axis displacement mechanism displacing a measurable object having an interior wall along an XY plane; a measurement sensor measuring a surface texture of the interior wall without contact; a Z axis displacement mechanism displacing the measurement sensor in a Z axis direction orthogonal to the XY plane and bringing the measurement sensor to face the interior wall; a W axis displacement mechanism displacing the measurement sensor facing the interior wall in a normal direction of the interior wall; and a ? axis displacement mechanism displacing the measurement sensor facing the interior wall along the interior wall.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 31, 2017
    Applicant: MITUTOYO CORPORATION
    Inventors: Sadayuki MATSUMIYA, Shuichi KAMIYAMA, Hidemitsu ASANO, Hiroshi SAKAI, Hiromu MAIE, Yoshihiko TAKAHASHI, Masanori ARAI, Ken MOTOHASHI