Patents by Inventor Hironao Fujii

Hironao Fujii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11549986
    Abstract: A voltage detection circuit includes a differential amplification circuit and a microcontroller unit (MCU). The MCU detects a differential voltage output from operational amplifiers of the differential amplification circuit, and calculates an internal resistance value of a battery cell based on the detected differential voltage. At this time, the MCU controls an amplification factor adjustment circuit of the differential amplification circuit based on a maximum voltage representing the highest voltage detectable by the MCU and the differential voltage output from the differential amplification circuit so as to set the amplification factor of the operational amplifiers.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: January 10, 2023
    Assignee: YAZAKI CORPORATION
    Inventors: Jian Wang, Hironao Fujii, Saki Oonishi
  • Publication number: 20220200312
    Abstract: A battery control apparatus includes a controller configured to control charging and discharging of a battery. During a use period of the battery, the controller is configured to estimate a state of health of the battery to obtain an estimated state of health; obtain, in accordance with relationship information indicating a relationship between a state of health of the battery after deterioration and a state of charge of the battery after deterioration, a state of charge after deterioration corresponding to the estimated state of health; and adjust the state of charge of the battery to the state of charge after deterioration.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 23, 2022
    Applicant: Yazaki Corporation
    Inventors: Jian Wang, Hironao Fujii
  • Patent number: 11275120
    Abstract: In a battery monitoring device, an amplifier circuit outputs an amplified differential voltage value obtained by amplifying a differential voltage value between a first voltage value of a battery and a reference voltage value, and outputs an amplified differential voltage value obtained by amplifying a differential voltage value between a second voltage value of the battery and the reference voltage value. A CPU calculates an internal resistance value of the battery based on the amplified differential voltage value outputted from the amplifier circuit, the amplified differential voltage value outputted from the amplifier circuit, a current value of a constant current adjusted by a constant current circuit, and a current value of a constant current adjusted by the constant current circuit. The reference voltage value is a voltage value between the first voltage value and the second voltage value.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 15, 2022
    Assignee: YAZAKI CORPORATION
    Inventors: Jian Wang, Hironao Fujii, Saki Oonishi
  • Publication number: 20210318387
    Abstract: In a battery monitoring device, an amplifier circuit outputs an amplified differential voltage value obtained by amplifying a differential voltage value between a first voltage value of a battery and a reference voltage value, and outputs an amplified differential voltage value obtained by amplifying a differential voltage value between a second voltage value of the battery and the reference voltage value. A CPU calculates an internal resistance value of the battery based on the amplified differential voltage value outputted from the amplifier circuit, the amplified differential voltage value outputted from the amplifier circuit, a current value of a constant current adjusted by a constant current circuit, and a current value of a constant current adjusted by the constant current circuit. The reference voltage value is a voltage value between the first voltage value and the second voltage value.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 14, 2021
    Inventors: Jian Wang, Hironao Fujii, Saki Oonishi
  • Patent number: 11133533
    Abstract: Provided is a differential voltage measurement device with enhanced measurement accuracy. A differential amplifying unit outputs a voltage corresponding to a difference voltage between a voltage held by the first capacitor and a voltage held by the second capacitor. The ?COM connects a battery cell to both ends of the first capacitor, and connects the cell battery to both ends of the second after the first capacitor holds the voltage across the cell battery. SW disconnects the electrical connection between the first capacitor and the negative electrode of and the negative electrode of the cell battery. ?COM, after the first capacitor holds the voltage across the cell battery, turns off the SW.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 28, 2021
    Assignee: YAZAKI CORPORATION
    Inventors: Jian Wang, Hironao Fujii
  • Publication number: 20210247449
    Abstract: A voltage detection circuit includes a differential, amplification circuit and a microcontroller unit (MCU). The MCU detects a differential voltage output from operational amplifiers of the differential amplification circuit, and calculates an internal resistance value of a battery cell based on the detected differential voltage. At this time, the MCU controls an amplification factor adjustment circuit of the differential amplification circuit based on a maximum voltage representing the highest voltage detectable by the MCU and the differential voltage output from the differential amplification circuit so as to set the amplification factor of the operational amplifiers.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 12, 2021
    Inventors: Jian Wang, Hironao Fujii, Saki Oonishi
  • Patent number: 10962602
    Abstract: A battery monitoring device is provided which improves communication quality, communication stability, and communication reliability. An ECU substrate and detection substrates which cannot directly communicate with the ECU substrate communicate via a relay substrate which is a detection substrate set up as relay of the detection substrates.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: March 30, 2021
    Assignee: YAZAKI CORPORATION
    Inventors: Hironao Fujii, Jian Wang
  • Patent number: 10950922
    Abstract: An object of the present invention is to provide a battery monitoring device in which communication quality is stabilized and improved. Detection boards are mounted respectively on a plurality of cells arranged in a line, and respectively have a first antenna for wirelessly communicating status information of the mounted cells. A second antenna for receiving the status information transmitted from the first antenna is mounted on an ECU board. The plurality of detection boards and the ECU board are disposed on upper surfaces of the plurality of cells as the same plane. The plurality of detection boards are arranged in a line along an arrangement direction. The ECU board is disposed at the center in the arrangement direction of the cells.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: March 16, 2021
    Assignee: YAZAKI CORPORATION
    Inventors: Jian Wang, Hironao Fujii
  • Patent number: 10838005
    Abstract: A differential voltage measuring device includes a first capacitor and a second capacitor each formed of a ceramic capacitor, a differential amplifier for outputting a voltage corresponding to a difference voltage between a voltage held by the first capacitor and a voltage held by the second capacitor, and ?COM for introducing a first voltage to the first capacitor, and a second voltage to the second capacitor with the first capacitor holding the first voltage, and ?COM introduces a third voltage to at least the first capacitor or the second capacitor, and after application of the third voltage stops, introduces the first voltage to the first capacitor or the second capacitor to which the third voltage was introduced.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: November 17, 2020
    Assignee: YAZAKI CORPORATION
    Inventors: Jian Wang, Hironao Fujii
  • Patent number: 10666066
    Abstract: A differential voltage measurement device includes a first capacitor, a second capacitor of which the capacity is smaller than that of the first capacitor, a differential amplification unit which outputs a voltage according to a differential voltage between a voltage held in the first capacitor and a voltage held in the second capacitor, and a control unit which guides a first voltage to the first capacitor and guides a second voltage to the second capacitor in a state where the first capacitor holds the first voltage.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: May 26, 2020
    Assignee: YAZAKI CORPORATION
    Inventors: Jian Wang, Hironao Fujii, Kei Matsumoto
  • Patent number: 10627450
    Abstract: Provided is a battery state detection device suitable for detecting a state of a battery mounted on a vehicle. A ?COM uses a first capacitor to measure a first sample of battery voltage, and after a predetermined standby time has elapsed, executes sample hold processing using the second capacitor for performing the second sample hold of the battery voltage. The ?COM detects the state of the battery based on the output of the differential amplifier when a condition is satisfied that the battery current is constant during both the first sample hold and the second sample hold and the battery current fluctuates during the standby time.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: April 21, 2020
    Assignee: YAZAKI CORPORATION
    Inventors: Hironao Fujii, Jian Wang, Kei Matsumoto
  • Publication number: 20200057114
    Abstract: A battery monitoring device is provided which improves communication quality, communication stability, and communication reliability. An ECU substrate and detection substrates which cannot directly communicate with the ECU substrate communicate via a relay substrate which is a detection substrate set up as relay of the detection substrates.
    Type: Application
    Filed: July 11, 2019
    Publication date: February 20, 2020
    Applicant: Yazaki Corporation
    Inventors: Hironao FUJII, Jian WANG
  • Publication number: 20200058980
    Abstract: An object of the present invention is to provide a battery monitoring device in which communication quality is stabilized and improved. Detection boards are mounted respectively on a plurality of cells arranged in a line, and respectively have a first antenna for wirelessly communicating status information of the mounted cells. A second antenna for receiving the status information transmitted from the first antenna is mounted on an ECU board. The plurality of detection boards and the ECU board are disposed on upper surfaces of the plurality of cells as the same plane. The plurality of detection boards are arranged in a line along an arrangement direction. The ECU board is disposed at the center in the arrangement direction of the cells.
    Type: Application
    Filed: July 10, 2019
    Publication date: February 20, 2020
    Applicant: Yazaki Corporation
    Inventors: Jian WANG, Hironao FUJII
  • Patent number: 10249914
    Abstract: One-side plates of first and second condensers are connected to a one-side electrode of one of a plurality of secondary cells. First switches connect the other-side electrode of the secondary cell to the other-side plate of one of the first condenser and the second condenser. An MCU controls the first switches to connect the other-side electrode of the secondary cell to the other-side plate of the first condenser when the plurality of secondary cells is in a first state, and then connect the other-side electrode of the secondary cell to the other-side plate of the second condenser when the plurality of secondary cells is in a second state. A differential amplifier circuit outputs a differential voltage of voltages of the other-side plates of the first condenser and the second condenser. A cell monitoring IC detects states of the secondary cells based on the differential voltage.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: April 2, 2019
    Assignee: YAZAKI CORPORATION
    Inventors: Yuichi Takahashi, Takahiro Syouda, Nobuyuki Takahashi, Ayako Saito, Tsutomu Saigo, Hironao Fujii, Jian Wang
  • Publication number: 20180210032
    Abstract: Provided is a battery state detection device suitable for detecting a state of a battery mounted on a vehicle. A ?COM uses a first capacitor to measure a first sample of battery voltage, and after a predetermined standby time has elapsed, executes sample hold processing using the second capacitor for performing the second sample hold of the battery voltage. The ?COM detects the state of the battery based on the output of the differential amplifier when a condition is satisfied that the battery current is constant during both the first sample hold and the second sample hold and the battery current fluctuates during the standby time.
    Type: Application
    Filed: November 29, 2017
    Publication date: July 26, 2018
    Applicant: Yazaki Corporation
    Inventors: Hironao FUJII, Jian WANG, Kei MATSUMOTO
  • Publication number: 20180212279
    Abstract: Provided is a differential voltage measurement device with enhanced measurement accuracy. A differential amplifying unit outputs a voltage corresponding to a difference voltage between a voltage held by the first capacitor and a voltage held by the second capacitor. The ?COM connects a battery cell to both ends of the first capacitor, and connects the cell battery to both ends of the second after the first capacitor holds the voltage across the cell battery. SW disconnects the electrical connection between the first capacitor and the negative electrode of and the negative electrode of the cell battery. ?COM, after the first capacitor holds the voltage across the cell battery, turns off the SW.
    Type: Application
    Filed: November 28, 2017
    Publication date: July 26, 2018
    Applicant: Yazaki Corporation
    Inventors: Jian WANG, Hironao FUJII
  • Patent number: 10020661
    Abstract: A voltage detection device for detecting a voltage across both ends of each of plural unit batteries which are connected to each other in series. The voltage detection device includes lowpass filters which are connected to the respective unit batteries, a first voltage detector which detects a voltage across both ends of each of the unit batteries that is supplied via a corresponding lowpass filter, a second voltage detector which detects a voltage across both ends of each of the unit batteries that is supplied without passage through the corresponding lowpass filter, and a failure detector which detects whether the lowpass filter is failing by comparing a voltage detection value detected by the first voltage detector with a voltage detection value detected by the second voltage detector.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: July 10, 2018
    Assignee: Yazaki Corporation
    Inventors: Hironao Fujii, Takaaki Izawa
  • Publication number: 20180164373
    Abstract: A differential voltage measuring device includes a first capacitor and a second capacitor each formed of a ceramic capacitor, a differential amplifier for outputting a voltage corresponding to a difference voltage between a voltage held by the first capacitor and a voltage held by the second capacitor, and ?COM for introducing a first voltage to the first capacitor, and a second voltage to the second capacitor with the first capacitor holding the first voltage, and ?COM introduces a third voltage to at least the first capacitor or the second capacitor, and after application of the third voltage stops, introduces the first voltage to the first capacitor or the second capacitor to which the third voltage was introduced.
    Type: Application
    Filed: October 12, 2017
    Publication date: June 14, 2018
    Applicant: Yazaki Corporation
    Inventors: Jian WANG, Hironao FUJII
  • Publication number: 20170187201
    Abstract: A differential voltage measurement device includes a first capacitor, a second capacitor of which the capacity is smaller than that of the first capacitor, a differential amplification unit which outputs a voltage according to a differential voltage between a voltage held in the first capacitor and a voltage held in the second capacitor, and a control unit which guides a first voltage to the first capacitor and guides a second voltage to the second capacitor in a state where the first capacitor holds the first voltage.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 29, 2017
    Inventors: Jian Wang, Hironao Fujii, Kei Matsumoto
  • Publication number: 20170033415
    Abstract: One-side plates of first and second condensers are connected to a one-side electrode of one of a plurality of secondary cells. First switches connect the other-side electrode of the secondary cell to the other-side plate of one of the first condenser and the second condenser. An MCU controls the first switches to connect the other-side electrode of the secondary cell to the other-side plate of the first condenser when the plurality of secondary cells is in a first state, and then connect the other-side electrode of the secondary cell to the other-side plate of the second condenser when the plurality of secondary cells is in a second state. A differential amplifier circuit outputs a differential voltage of voltages of the other-side plates of the first condenser and the second condenser. A cell monitoring IC detects states of the secondary cells based on the differential voltage.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 2, 2017
    Inventors: Yuichi Takahashi, Takahiro Syouda, Nobuyuki Takahashi, Ayako Saito, Tsutomu Saigo, Hironao Fujii, Jian Wang