Patents by Inventor Hironobu Narui

Hironobu Narui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120404
    Abstract: This normally-off mode polarization super junction GaN-based field effect transistor has an undoped GaN layer 11, an AlxGa1-xN layer 12 (0<x<1), an island-like undoped GaN layer 13, a p-type GaN layer 14, a p-type InyGa1-yN layer 15 (0<y<1), a gate electrode 16 on the p-type InyGa1-yN layer 15 and a source electrode 17 and a drain electrode 17 on the AlxGa1-xN layer 12. When the polarization charge amount of the hetero-interface between the AlxGa1-xN layer 12 and the undoped GaN layer 11 and the hetero-interface between the AlxGa1-xN layer 12 and the undoped GaN layer 13 is denoted as NPZ and the thickness of the AlxGa1-xN layer 12 is denoted as d, NPZ d?2.64×1014 [cm?2 nm] is satisfied.
    Type: Application
    Filed: October 5, 2021
    Publication date: April 11, 2024
    Inventors: Hiroji KAWAI, Shuichi YAGI, Hironobu NARUI
  • Publication number: 20230352573
    Abstract: A semiconductor element includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, a fourth semiconductor layer, a first intermediate layer, a second intermediate layer, a source electrode, a drain electrode, and a gate electrode. The band gap of the second semiconductor layer is larger than the band gaps of the first semiconductor layer and the third semiconductor layer. The band gaps of the first intermediate layer and the second intermediate layer that sandwich the second semiconductor layer are larger than the band gap of the second semiconductor layer.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 2, 2023
    Inventors: Hisao SATO, Koji OKUNO, Daisuke SHINODA, Toshiya UEMURA, Hironobu NARUI, Hiroji KAWAI, Shuichi YAGI
  • Publication number: 20230170407
    Abstract: This normally-off mode polarization super junction GaN-based FET has an undoped GaN layer 11, an AlxGa1-xN layer 12, an island-like undoped GaN layer 13, a p-type GaN layer 14 and a p-type InyGa1-yN layer 15 which are stacked in order. The FET has a gate electrode 16 on the uppermost layer, a source electrode 17 and a drain electrode 17 on the AlxGa1-xN layer 12 and a p-type InzGa1-zN layer 19 and a gate electrode 20 which are located beside one end of the undoped GaN layer 13 on the AlxGa1-xN layer 12. The gate electrode 20 may be provided on the p-type InzGa1-zN layer 19 via a gate insulating film.
    Type: Application
    Filed: September 16, 2021
    Publication date: June 1, 2023
    Inventors: Hiroji KAWAI, Shuichi YAGI, Hironobu NARUI
  • Publication number: 20220238728
    Abstract: This diode is configured by a double gate PSJ-GaN-based FET. This FET has a GaN layer 11, an AlxGa1-xN layer 12, an undoped GaN layer 13, and a p-type GaN layer 14. A source electrode 19 and a drain electrode 20 are provided on the AlxGa1-xN layer 12, a first gate electrode 15 is provided on the p-type GaN layer 14, and a second gate electrode 18 is provided on a gate insulating film 17 provided inside a groove 16 which is provided in the AlxGa1-xN layer 12 between the source electrode 19 and the undoped GaN layer 13. The source electrode 19, the first gate electrode 15, and the second gate electrode 18 are connected to each other. Or the source electrode 19 and the second gate electrode 18 are connected to each other, and a positive voltage is applied to the first gate electrode 15 for the source electrode 19 and the second gate el electrode 18.
    Type: Application
    Filed: March 5, 2020
    Publication date: July 28, 2022
    Inventors: Hiroji KAWAI, Shuichi YAGI, Takeru SAITO, Fumihiko NAKAMURA, Hironobu NARUI
  • Patent number: 10578819
    Abstract: A surface light emitting semiconductor laser element, comprises a substrate, a lower reflector including a semiconductor multi-layer disposed on the substrate, an active layer disposed on the lower reflector, an upper reflector including a semiconductor multi-layer disposed on the active layer, a compound semiconductor layer having a first opening for exposing the upper reflector and extending over the upper reflector, and a metal film having a second opening for exposing the upper reflector disposed inside of the first opening and extending over the compound semiconductor layer, wherein the metal film and the compound semiconductor layer constitute a complex refractive index distribution structure where a complex refractive index is changed from the center of the second opening towards the outside. A method of emitting laser light in a single-peak transverse mode is also provided.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: March 3, 2020
    Assignee: Sony Corporation
    Inventors: Yoshiaki Watanabe, Hironobu Narui, Yuichi Kuromizu, Yoshinori Yamauchi, Yoshiyuki Tanaka
  • Publication number: 20180341076
    Abstract: A surface light emitting semiconductor laser element, comprises a substrate, a lower reflector including a semiconductor multi-layer disposed on the substrate, an active layer disposed on the lower reflector, an upper reflector including a semiconductor multi-layer disposed on the active layer, a compound semiconductor layer having a first opening for exposing the upper reflector and extending over the upper reflector, and a metal film having a second opening for exposing the upper reflector disposed inside of the first opening and extending over the compound semiconductor layer, wherein the metal film and the compound semiconductor layer constitute a complex refractive index distribution structure where a complex refractive index is changed from the center of the second opening towards the outside. A method of emitting laser light in a single-peak transverse mode is also provided.
    Type: Application
    Filed: June 19, 2018
    Publication date: November 29, 2018
    Inventors: Yoshiaki Watanabe, Hironobu Narui, Yuichi Kuromizu, Yoshinori Yamauchi, Yoshiyuki Tanaka
  • Patent number: 10025051
    Abstract: A surface light emitting semiconductor laser element, comprises a substrate, a lower reflector including a semiconductor multi-layer disposed on the substrate, an active layer disposed on the lower reflector, an upper reflector including a semiconductor multi-layer disposed on the active layer, a compound semiconductor layer having a first opening for exposing the upper reflector and extending over the upper reflector, and a metal film having a second opening for exposing the upper reflector disposed inside of the first opening and extending over the compound semiconductor layer, wherein the metal film and the compound semiconductor layer constitute a complex refractive index distribution structure where a complex refractive index is changed from the center of the second opening towards the outside. A method of emitting laser light in a single-peak transverse mode is also provided.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: July 17, 2018
    Assignee: Sony Corporation
    Inventors: Yoshiaki Watanabe, Hironobu Narui, Yuichi Kuromizu, Yoshinori Yamauchi, Yoshiyuki Tanaka
  • Patent number: 9983375
    Abstract: A surface light emitting semiconductor laser element, comprises a substrate, a lower reflector including a semiconductor multi-layer disposed on the substrate, an active layer disposed on the lower reflector, an upper reflector including a semiconductor multi-layer disposed on the active layer, a compound semiconductor layer having a first opening for exposing the upper reflector and extending over the upper reflector, and a metal film having a second opening for exposing the upper reflector disposed inside of the first opening and extending over the compound semiconductor layer, wherein the metal film and the compound semiconductor layer constitute a complex refractive index distribution structure where a complex refractive index is changed from the center of the second opening towards the outside. A method of emitting laser light in a single-peak transverse mode is also provided.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 29, 2018
    Assignee: Sony Corporation
    Inventors: Yoshiaki Watanabe, Hironobu Narui, Yuichi Kuromizu, Yoshinori Yamauchi, Yoshiyuki Tanaka
  • Patent number: 9911894
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: March 6, 2018
    Assignee: SONY CORPORATION
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Publication number: 20180059344
    Abstract: A surface light emitting semiconductor laser element, comprises a substrate, a lower reflector including a semiconductor multi-layer disposed on the substrate, an active layer disposed on the lower reflector, an upper reflector including a semiconductor multi-layer disposed on the active layer, a compound semiconductor layer having a first opening for exposing the upper reflector and extending over the upper reflector, and a metal film having a second opening for exposing the upper reflector disposed inside of the first opening and extending over the compound semiconductor layer, wherein the metal film and the compound semiconductor layer constitute a complex refractive index distribution structure where a complex refractive index is changed from the center of the second opening towards the outside. A method of emitting laser light in a single-peak transverse mode is also provided.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Inventors: Yoshiaki Watanabe, Hironobu Narui, Yuichi Kuromizu, Yoshinori Yamauchi, Yoshiyuki Tanaka
  • Patent number: 9455373
    Abstract: A light emitting element includes: a laminated body including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer in this order, the second conductive semiconductor layer having a light extraction surface; and a recombination suppression structure provided in vicinity of an end surface of the active layer, the recombination suppression structure having a bandgap larger than a bandgap of the active layer.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 27, 2016
    Assignee: SONY CORPORATION
    Inventors: Mikihiro Yokozeki, Takahiro Koyama, Hironobu Narui, Hidekazu Aoyagi, Michinori Shiomi, Takahiko Kawasaki, Katsutoshi Itou
  • Publication number: 20150293319
    Abstract: A surface light emitting semiconductor laser element, comprises a substrate, a lower reflector including a semiconductor multi-layer disposed on the substrate, an active layer disposed on the lower reflector, an upper reflector including a semiconductor multi-layer disposed on the active layer, a compound semiconductor layer having a first opening for exposing the upper reflector and extending over the upper reflector, and a metal film having a second opening for exposing the upper reflector disposed inside of the first opening and extending over the compound semiconductor layer, wherein the metal film and the compound semiconductor layer constitute a complex refractive index distribution structure where a complex refractive index is changed from the center of the second opening towards the outside. A method of emitting laser light in a single-peak transverse mode is also provided.
    Type: Application
    Filed: May 29, 2015
    Publication date: October 15, 2015
    Inventors: Yoshiaki Watanabe, Hironobu Narui, Yuichi Kuromizu, Yoshinori Yamauchi, Yoshiyuki Tanaka
  • Publication number: 20150228846
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 13, 2015
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Patent number: 9034738
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: May 19, 2015
    Assignee: SONY CORPORATION
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Patent number: 8859401
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: October 14, 2014
    Assignee: Sony Corporation
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobutaka Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Publication number: 20140151836
    Abstract: The optical semiconductor apparatus includes, on an n-GaAs substrate, a surface-emitting semiconductor laser device and a photodiode integrated on the periphery of the laser device with an isolation region interposed there between. The laser device is composed of an n-DBR mirror, an active region, and a p-DBR mirror and includes a columnar layered structure with its sidewall covered with an insulating film. The photodiode is formed on the substrate and has a circular layered structure wherein an i-GaAs layer and a p-GaAs layer surrounds the laser device with an isolating region interposed between the i-GaAs and p-GaAs layers and the laser device. The diameter of the photodiode is smaller than the diameter of the optical fiber core optically coupled with the optical semiconductor apparatus. Since the laser device and the photodiode are monolithically integrated, the devices do not require optical alignment, and thus, facilitate optical coupling with an optical fiber.
    Type: Application
    Filed: February 5, 2014
    Publication date: June 5, 2014
    Applicant: Sony Corporation
    Inventors: Hironobu Narui, Tomonori Hino, Nobukata Okano, Jugo Mitomo
  • Patent number: 8680540
    Abstract: The optical semiconductor apparatus includes, on an n-GaAs substrate, a surface-emitting semiconductor laser device and a photodiode integrated on the periphery of the laser device with an isolation region interposed there between. The laser device is composed of an n-DBR mirror, an active region, and a p-DBR mirror and includes a columnar layered structure with its sidewall covered with an insulating film. The photodiode is formed on the substrate and has a circular layered structure wherein an i-GaAs layer and a p-GaAs layer surrounds the laser device with an isolating region interposed between the i-GaAs and p-GaAs layers and the laser device. The diameter of the photodiode is smaller than the diameter of the optical fiber core optically coupled with the optical semiconductor apparatus. Since the laser device and the photodiode are monolithically integrated, the devices do not require optical alignment, and thus, facilitate optical coupling with an optical fiber.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: March 25, 2014
    Assignee: Sony Corporation
    Inventors: Hironobu Narui, Tomonori Hino, Nobukata Okano, Jugo Mitomo
  • Patent number: 8409893
    Abstract: A convex part formation method of forming a convex part in parallel with a <110> direction of a backing on the backing having a {100} face as the top surface thereof, includes: (a) forming a mask layer in parallel with the <110> direction on the backing; (b) etch the backing so as to form a convex-part upper layer whose sectional shape on a cutting plane corresponding to a {110} face is an isosceles trapezoid, the base of which is longer than the upper side thereof, and the side surface of which has an inclination of ?U; and (c) further etching the backing so as to form a convex-part lower layer whose sectional shape on the cutting plane corresponding to the {110} face is an isosceles trapezoid, the base of which is longer than the upper side thereof, and the side surface of which has an inclination of ?D (where ?D??U).
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: April 2, 2013
    Assignee: Sony Corporation
    Inventors: Kiyotaka Yashima, Yoshinari Kiwaki, Kamada Michiru, Sachio Karino, Hironobu Narui, Nobukata Okano
  • Patent number: 8320421
    Abstract: A semiconductor light-emitting device configured to decrease a leakage current in a current-blocking layer and including a light-emitting portion composed of a first compound semiconductor layer having a first conductivity type, an active layer, and a second layer having a second conductivity type, and a current-blocking layer in contact with the side of the light-emitting portion and composed of a third layer having the first conductivity type and a fourth layer having the second conductivity type.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: November 27, 2012
    Assignee: Sony Corporation
    Inventors: Sachio Karino, Eiji Takase, Makoto Oogane, Tsuyoshi Nagatake, Michiru Kamada, Hironobu Narui, Nobukata Okano
  • Patent number: 8254790
    Abstract: An optical-information transmitting, lighting apparatus 2 is installed in a place where a lighting apparatus of the existing type for applying light generally used is provided. The lighting apparatus 2 comprises an illumination light source 4 for applying light and an information-transmitting unit 5 for transmitting optical information. A person who may receive information from the lighting apparatus 2 has a mobile terminal 3, which receives the optical information transmitted from the information-transmitting unit 5. Since the lighting apparatus of the existing type is widely used in our living space. Hence, the optical-information transmitting, lighting apparatus 2 can convert every place where an existing type lighting apparatus is used, into an optical communications space.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: August 28, 2012
    Assignee: Sony Corporation
    Inventors: Nobukata Okano, Yoshiaki Watanabe, Jugo Mitomo, Tomomori Hino, Hironobu Narui