Patents by Inventor Hiroshi Hatakeyama
Hiroshi Hatakeyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230150393Abstract: An example embodiment includes a large observation device that observes the object using a quantum beam; a reproduction device that is installed in the large observation device and reproduces an input to the object in a state where the object can be observed by the large observation device; a dynamic state observation device that observes a dynamic state of a functional object functioning by a combination of a plurality of elements; a first information acquisition unit that functionally decomposes the functional object up to an element corresponding to the object and acquires first information that is input information to the element corresponding to the object; and a transmission unit that transmits the first information to the reproduction device, in which the reproduction device reproduces the input to the object on the basis of the first information.Type: ApplicationFiled: March 25, 2021Publication date: May 18, 2023Applicants: NISSAN ARC, LTD., HORIBA, LTD.Inventors: Takashi MATSUMOTO, Hideto IMAI, Masashi MATSUMOTO, Ankur BALIYAN, Yasunari HANAKI, Keijiro IWAO, Jun HIROSE, Hiroshi HATAKEYAMA
-
Publication number: 20140134461Abstract: A secondary battery having high heat dissipation ability is provided. A secondary battery including a plurality of positive electrodes and a plurality of negative electrodes in an outer package, wherein the plurality of positive electrodes are connected to each other outside the outer package without being connected to each other inside the outer package, or wherein the plurality of negative electrodes are connected to each other outside the outer package without being connected to each other inside the outer package, or wherein the plurality of positive electrodes are connected to each other outside the outer package without being connected to each other inside the outer package and the plurality of negative electrodes are connected to each other outside the outer package without being connected to each other inside the outer package.Type: ApplicationFiled: June 5, 2012Publication date: May 15, 2014Inventors: Kazuhiko Inoue, Hiroshi Hatakeyama, Takehiro Noguchi
-
Publication number: 20140023935Abstract: Provided is a lithium secondary cell of 5V class having a positive electrode operating voltage of 4.5V or higher with respect to metallic lithium; the lithium secondary cell has high energy density, inhibits degradation of the electrolytic solution that comes in contact with the positive electrode and the negative electrode, and has particularly long cell life when used under high-temperature environments.Type: ApplicationFiled: April 13, 2012Publication date: January 23, 2014Applicant: NEC CorporationInventors: Takehiro Noguchi, Hideaki Sasaki, Makiko Uehara, Kazuaki Matsumoto, Hiroshi Hatakeyama
-
Publication number: 20130266847Abstract: The object of an exemplary embodiment of the invention is to provide a lithium secondary battery which has high energy density by containing a positive electrode active substance operating at a potential of 4.5 V or higher with respect to lithium and which has excellent cycle property. An exemplary embodiment of the invention is an lithium secondary battery, which comprises a positive electrode comprising a positive electrode active substance and an electrolyte liquid comprising a nonaqueous electrolyte solvent; wherein the positive electrode active substance operates at a potential of 4.5 V or higher with respect to lithium; and wherein the nonaqueous electrolyte solvent comprises a fluorine-containing phosphate represented by a prescribed formula.Type: ApplicationFiled: December 7, 2011Publication date: October 10, 2013Applicants: NEC ENERGY DEVICES, LTD., NEC CORPORATIONInventors: Takehiro Noguchi, Hideaki Sasaki, Makiko Uehara, Ippei Waki, Shinako Kaneko, Hiroshi Hatakeyama, Shinsaku Saitho, Yuukou Katou
-
Patent number: 8503072Abstract: A gain-clamped semiconductor optical amplifier according to the present invention has a pair of DBR areas 2, 3 disposed in sandwiching relation to gain area 1 for amplifying guided light. A portion of a waveguide of gain area 1 comprises MMI waveguide 11.Type: GrantFiled: December 26, 2003Date of Patent: August 6, 2013Assignee: NEC CorporationInventor: Hiroshi Hatakeyama
-
Patent number: 8166814Abstract: A flow sensor may be formed by bonding a sensor chip formed with a flow rate detecting part and a flow path-forming member that is provided on the sensor chip and is formed with a flow path for a fluid flowing in the flow rate detecting part to each other on the upper surface of a substrate. The flow path-forming member may be formed by bonding a transparent first flow path forming member and a second flow path-forming member to each other. The first flow path forming member has a plate shape, and is provided with an inflow port and a outflow port for the fluid to be measured, and the second flow path forming member has a plate shape, and is provided with a through hole that forms the flow path along the flow of the fluid flowing along the flow rate detecting part.Type: GrantFiled: August 14, 2008Date of Patent: May 1, 2012Assignee: Yamatake CorporationInventors: Shinichi Ike, Hiroshi Hatakeyama, Satoshi Tsuchiya
-
Patent number: 8067336Abstract: A cardboard cylinder for winding a heat-sensitive transfer image-receiving sheet having a receptive layer on one surface of a support around the cardboard cylinder, wherein an innermost surface of the cardboard cylinder is composed of a layer containing a polyolefin resin having a number average molecular weight of 12,000 or more in a proportion of at least 80% by mass based on the layer.Type: GrantFiled: April 23, 2008Date of Patent: November 29, 2011Assignee: FUJIFILM CorporationInventors: Akito Yokozawa, Hiroshi Hatakeyama
-
Patent number: 7974328Abstract: The present invention provides a surface-emission type semiconductor laser wherein an effective length of a cavity is reduced, thereby enabling to realize a higher-speed direct modulation. In the surface-emission type semiconductor laser according to the present invention, when supposing the optical path length (L) of a resonator part relative to a lasing wavelength ?0 to be given as 0.9×?0?L?1.1×?0, and denoting the refractive indexes of a high refractive index layer and a low refractive index layer of a dielectric DBR by nH1 and nL1; the average refractive index within an optical path length ?0/4 in the semiconductor in contact with the dielectric DBR by nS1; and the refractive indexes of the high refractive index layer and the low refractive index layer of a semiconductor DBR by nH2 and nL2, respective materials to be used are selected so as to satisfy the following conditions (1) and (2): nH1>f(nS1)nL12+g(nS1)nL1+h(nS1),??(1) where f(nS1)=0.0266 nS12?0.2407 nS1+0.6347; g(nS1)=?0.0508 nS12+0.Type: GrantFiled: March 14, 2008Date of Patent: July 5, 2011Assignee: NEC CorporationInventors: Naofumi Suzuki, Masayoshi Tsuji, Takayoshi Anan, Kenichiro Yashiki, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
-
Publication number: 20110149381Abstract: A gain-clamped semiconductor optical amplifier according to the present invention has a pair of DBR areas 2, 3 disposed in sandwiching relation to gain area 1 for amplifying guided light. A portion of a waveguide of gain area 1 comprises MMI waveguide 11.Type: ApplicationFiled: December 26, 2003Publication date: June 23, 2011Inventor: Hiroshi Hatakeyama
-
Patent number: 7940828Abstract: An optical communication system for performing data transmission with optical signals comprises a first optical transmitter and a first optical receiver. The first optical transmitter has a first surface-emitting laser including an active layer of a multiple quantum well structure having a quantum well layer of InxGa1-xAs (0.15?x?0.35), the first surface-emitting laser having an oscillation wavelength ranging from 1000 nm to 1100 nm inclusive. The first optical transmitter transmits an optical signal generated by the first surface-emitting laser. The first optical receiver is connected to the first optical transmitter by a first optical transfer path, and receives the optical signal transmitted from the first optical transmitter through the first optical transfer path.Type: GrantFiled: December 27, 2006Date of Patent: May 10, 2011Assignee: NEC CorporationInventors: Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki
-
Patent number: 7881358Abstract: A surface emitting laser is provided with a first multilayer Bragg reflecting mirror including a first layer, a second multilayer Bragg reflecting mirror including a second layer, and an optical resonator unit that is held between these multilayer Bragg reflecting mirrors and includes an active layer. Further, the optical resonator unit contacts with the first layer and second layer respectively. The effective refraction index neff of the resonator unit is larger than either the first layer or the second layer, and an optical length neffL of the optical resonator unit has a relationship with an oscillating wavelength ? of the surface emitting laser to satisfy the following relationship: 0.5?<neffL?0.7?.Type: GrantFiled: December 18, 2007Date of Patent: February 1, 2011Assignee: NEC CorporationInventors: Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki, Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
-
Patent number: 7817696Abstract: VCSELs with a conventional oxide-confined structure have problems to be solved for the purpose of reducing the internal stress and thermal resistance of the device. In particular, the problems should be solved in order to achieve the high reliability of the high-speed modulation-type VCSELs.Type: GrantFiled: March 23, 2007Date of Patent: October 19, 2010Assignee: NEC CorporationInventor: Hiroshi Hatakeyama
-
Publication number: 20100139389Abstract: A heater pattern is arranged on at least one substrate among substrates configuring a package, and a temperature in the package is controlled by controlling a quantity of electricity carried to the heater pattern corresponding to the ambient temperature of a sensor chip in the package.Type: ApplicationFiled: February 15, 2008Publication date: June 10, 2010Applicant: YAMATAKE CORPORATIONInventors: Yasuji Morita, Hiroshi Hatakeyama, Shigeru Aoshima, Shuji Morio, Isamu Warashina
-
Publication number: 20100089146Abstract: A package is configured by stacking a flat board whereupon a rectangular hole for storing a sensor chip is formed, a flat board whereupon a hole section to be a package inner channel for introducing a measurement target gas into the sensor chip is formed, and a flat board whereupon hole sections which communicate with the package inner channel as an inlet and an outlet of the measurement target gas on the same end surface of the package are formed.Type: ApplicationFiled: January 22, 2008Publication date: April 15, 2010Applicant: YAMATAKE CORPORATIONInventors: Yasuji Morita, Hiroshi Hatakeyama, Shigeru Aoshima, Isamu Warashina
-
Publication number: 20100054290Abstract: VCSELs with a conventional oxide-confined structure have problems to be solved for the purpose of reducing the internal stress and thermal resistance of the device. In particular, the problems should be solved in order to achieve the high reliability of the high-speed modulation-type VCSELs.Type: ApplicationFiled: March 23, 2007Publication date: March 4, 2010Applicant: NEC CORPORATIONInventor: Hiroshi Hatakeyama
-
Publication number: 20100034233Abstract: The present invention provides a surface-emission type semiconductor laser wherein an effective length of a cavity is reduced, thereby enabling to realize a higher-speed direct modulation. In the surface-emission type semiconductor laser according to the present invention, when supposing the optical path length (L) of a resonator part relative to a lasing wavelength ?0 to be given as 0.9×?0?L?1.1×?0, and denoting the refractive indexes of a high refractive index layer and a low refractive index layer of a dielectric DBR by nH1 and nL1; the average refractive index within an optical path length ?0/4 in the semiconductor in contact with the dielectric DBR by nS1; and the refractive indexes of the high refractive index layer and the low refractive index layer of a semiconductor DBR by nH2 and nL2, respective materials to be used are selected so as to satisfy the following conditions (1) and (2): nH1>f(nS1)nL12+g(nS1)nL1+h(nS1),??(1) where f(nS1)=0.0266 nS12?0.2407 nS1+0.6347; g(nS1)=?0.0508 nS12+0.Type: ApplicationFiled: March 14, 2008Publication date: February 11, 2010Inventors: Naofumi Suzuki, Masayoshi Tsuji, Takayoshi Anan, Kenichiro Yashiki, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
-
Publication number: 20100020835Abstract: A surface emitting laser is provided with a first multilayer Bragg reflecting mirror including a first layer, a second multilayer Bragg reflecting mirror including a second layer, and an optical resonator unit that is held between these multilayer Bragg reflecting mirrors and includes an active layer. Further, the optical resonator unit contacts with the first layer and second layer respectively. The effective refraction index neff of the resonator unit is larger than either the first layer or the second layer, and an optical length neffL of the optical resonator unit has a relationship with an oscillating wavelength ? of the surface emitting laser to satisfy the following relationship: 0.5?<neffL?0.7?.Type: ApplicationFiled: December 18, 2007Publication date: January 28, 2010Inventors: Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki, Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
-
Publication number: 20090078040Abstract: A flow sensor may be formed by bonding a sensor chip formed with a flow rate detecting part and a flow path-forming member that is provided on the sensor chip and is formed with a flow path for a fluid flowing in the flow rate detecting part to each other on the upper surface of a substrate. The flow path-forming member may be formed by bonding a transparent first flow path forming member and a second flow path-forming member to each other. The first flow path forming member has a plate shape, and is provided with an inflow port and a outflow port for the fluid to be measured, and the second flow path forming member has a plate shape, and is provided with a through hole that forms the flow path along the flow of the fluid flowing along the flow rate detecting part.Type: ApplicationFiled: August 14, 2008Publication date: March 26, 2009Applicant: Yamatake CorporationInventors: Shinichi Ike, Hiroshi Hatakeyama, Satoshi Tsuchiya
-
Publication number: 20090080488Abstract: A surface emitting laser including a semiconductor substrate, a semiconductor substrate, a first reflector formed on the semiconductor substrate, an active layer formed on the first reflector, a tunnel junction layer formed above a part of the active layer, a semiconductor spacer layer which covers the tunnel junction layer, a second reflector formed on the semiconductor spacer layer in a region above the tunnel junction layer, a first electrode formed in the periphery of the second reflector on the semiconductor spacer layer, and a second electrode electrically connected to a layer lower than the active layer, wherein a layer thickness of the semiconductor spacer layer in the region directly above the tunnel junction layer is thinner than the layer thickness of the semiconductor spacer layer in the region directly below the first electrode.Type: ApplicationFiled: September 24, 2008Publication date: March 26, 2009Applicant: NEC CORPORATIONInventors: Hiroshi HATAKEYAMA, Naofumi SUZUKI, Kenichiro YASHIKI, Takeshi AKAGAWA, Takayoshi ANAN, Masayoshi TSUJI, Kimiyoshi FUKATSU
-
Publication number: 20090028201Abstract: An optical communication system for performing data transmission with optical signals comprises a first optical transmitter and a first optical receiver. The first optical transmitter has a first surface-emitting laser including an active layer of a multiple quantum well structure having a quantum well layer of InxGa1-xAs (0.15?x?0.35), the first surface-emitting laser having an oscillation wavelength ranging from 1000 nm to 1100 nm inclusive. The first optical transmitter transmits an optical signal generated by the first surface-emitting laser. The first optical receiver is connected to the first optical transmitter by a first optical transfer path, and receives the optical signal transmitted from the first optical transmitter through the first optical transfer path.Type: ApplicationFiled: December 27, 2006Publication date: January 29, 2009Applicant: NEC CORPORATIONInventors: Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki