Patents by Inventor Hiroshi Hirano

Hiroshi Hirano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079103
    Abstract: An information processing device (40) according to one embodiment of the present disclosure includes: an analysis unit (41) being a first data generation unit that generates objective score data, which indicates objective scores in time series, based on a plurality of pieces of objective data regarding a patient; a processing unit (42) being a second data generation unit that generates subjective score data, which indicates subjective scores in time series, based on a plurality of pieces of subjective data obtained from the patient; and a generation unit (44) being an image generation unit that generates a score image indicating the objective score data and the subjective score data.
    Type: Application
    Filed: December 23, 2021
    Publication date: March 7, 2024
    Inventors: RITSUKO KANO, EIJIRO MORI, SHINSUKE NOGUCHI, KAZUMI HIRANO, TAKAFUMI YANAGIMOTO, KOJI SATO, HIROSHI HARA
  • Patent number: 11845629
    Abstract: A partially separated fiber bundle includes a separated fiber section and an unseparated fiber section, being configured to give a ratio Amax/Amin of 1.1 or larger and 3 or smaller, when the number of fiber bundles contained in the width direction of the partially separated fiber bundle (fiber separating number: Nn) measured at a freely selected point Pn (where, n represents an integer of 1 to 100, and freely selected points Pn and Pn+1, excluding n=100, being 50 cm or more away from each other), is divided by a full width of Wn of the partially separated fiber bundle, to calculate the fiber separating number per unit width An, and assuming its maximum value as Amax and its minimum value as Amin.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: December 19, 2023
    Assignee: Toray Industries, Inc.
    Inventors: Akihiko Matsui, Masaru Tateyama, Satoshi Seike, Mitsuki Fuse, Hiroshi Hirano, Kazuma Ura
  • Patent number: 11377528
    Abstract: A reinforcing fiber mat includes reinforcing fiber bundles having an average fiber length of 5 mm to 100 mm, wherein reinforcing fiber bundles consisting of 86 or more fibers per bundle are contained at a weight content of more than 99 wt % to 100 wt % and the reinforcing fiber bundles contain single yarns by 500 fibers/mm-width or more and 1,600 fibers/mm-width or less and have a drape level of 120 mm or more and 240 mm or less.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: July 5, 2022
    Assignee: Toray Industries, Inc.
    Inventors: Satoshi Seike, Masaru Tateyama, Mitsuki Fuse, Hiroshi Hirano, Akihiko Matsui, Kazuma Ura
  • Publication number: 20220055857
    Abstract: A partially separated fiber bundle includes a separated fiber section and an unseparated fiber section, being configured to give a ratio Amax/Amin of 1.1 or larger and 3 or smaller, when the number of fiber bundles contained in the width direction of the partially separated fiber bundle (fiber separating number: Nn) measured at a freely selected point Pn (where, n represents an integer of 1 to 100, and freely selected points Pn and Pn+1, excluding n=100, being 50 cm or more away from each other), is divided by a full width of Wn of the partially separated fiber bundle, to calculate the fiber separating number per unit width An, and assuming its maximum value as Amax and its minimum value as Amin.
    Type: Application
    Filed: July 30, 2019
    Publication date: February 24, 2022
    Inventors: Akihiko Matsui, Masaru Tateyama, Satoshi Seike, Mitsuki Fuse, Hiroshi Hirano, Kazuma Ura
  • Patent number: 11230630
    Abstract: A partially separated fiber bundle having a surface of a reinforcing fiber coated with a sizing agent containing a water-soluble polyamide-based resin, in which a separated fiber section consisting of a plurality of separated fiber bundles and an unseparated fiber section are provided alternately along a longitudinal direction of the reinforcing fiber bundle consisting of a plurality of single yarns, wherein the reinforcing fiber bundle contains 600 fibers/mm or more and less than 1,600 fibers/mm of fibers per unit width while the reinforcing fiber has a drape level of 120 mm or more and 240 mm or less.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: January 25, 2022
    Assignee: Toray Industries, Inc.
    Inventors: Mitsuki Fuse, Masaru Tateyama, Hiroshi Hirano, Satoshi Seike, Akihiko Matsui, Kazuma Ura, Tetsuya Motohashi
  • Patent number: 11046787
    Abstract: Provided are a polylactide-grafted cellulose nanofiber that is suitable as a molding material, and a production method thereof. A polylactide-grafted cellulose nanofiber includes grafted cellulose having a graft chain bonding to cellulose constituting a cellulose nanofiber, wherein the graft chain is a polylactide, and a ratio of an absorbance derived from C?O of the polylactide to an absorbance derived from O—H of the cellulose on an infrared absorption spectrum is no less than 0.01 and no greater than 1,000. In addition, a production method of a polylactide-grafted cellulose nanofiber includes carrying out graft polymerization of a lactide to cellulose constituting a cellulose nanofiber in the presence of an organic polymerization catalyst which includes an amine and a salt obtained by reacting the amine with an acid. As the organic polymerization catalyst, 4-dimethylaminopyridine and 4-dimethylaminopyridinium triflate are preferred.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: June 29, 2021
    Assignees: OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, DAIO PAPER CORPORATION
    Inventors: Joji Kadota, Yasuyuki Agari, Hiroshi Hirano, Akinori Okada, Takaaki Imai
  • Publication number: 20210187902
    Abstract: The present invention is a laminate: with which differences in the thermal expansion coefficient at interfaces between different materials in the interior of a semiconductor element or the like can be kept small; which has high heat resistance; and which has high thermal conductivity. This laminate is provided with at least two layers of thermal expansion-controlling members, the thermal expansion-controlling members including a thermally conductive first inorganic filler joined to one end of a first coupling agent, and a thermally conductive second inorganic filler joined to one end of a second coupling agent; the other end of the first coupling agent and the other end of the second coupling agent are respectively joined to a polymerizable compound, or joined to one another; and the thermal expansion-controlling members have thermal expansion coefficients that are respectively different.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 24, 2021
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi FUJIWARA, Jyunichi INAGAKI, Yasuyuki AGARI, Hiroshi HIRANO, Joji KADOTA, Akinori OKADA
  • Publication number: 20210039281
    Abstract: A reinforcing fiber bundle base material has a reinforcing fiber bundle surface to which a sizing agent adheres, wherein a reinforcing fiber bundle has a fiber number per unit width of 600 fibers/mm or more and less than 1,600 fibers/mm while the reinforcing fiber bundle has a drape level of 120 mm or more and 240 mm or less.
    Type: Application
    Filed: January 17, 2019
    Publication date: February 11, 2021
    Inventors: Mitsuki Fuse, Masaru Tateyama, Hiroshi Hirano, Satoshi Seike, Akihiko Matsui, Kazuma Ura
  • Publication number: 20200354532
    Abstract: A reinforcing fiber mat includes reinforcing fiber bundles having an average fiber length of 5 mm to 100 mm, wherein reinforcing fiber bundles consisting of 86 or more fibers per bundle are contained at a weight content of more than 99 wt % to 100 wt % and the reinforcing fiber bundles contain single yarns by 500 fibers/mm-width or more and 1,600 fibers/mm-width or less and have a drape level of 120 mm or more and 240 mm or less.
    Type: Application
    Filed: January 17, 2019
    Publication date: November 12, 2020
    Inventors: Satoshi Seike, Masaru Tateyama, Mitsuki Fuse, Hiroshi Hirano, Akihiko Matsui, Kazuma Ura
  • Publication number: 20200347522
    Abstract: A reinforcing fiber bundle is a continuous reinforcing fiber bundle having a length of at least 1 m and is characterized by the number of monofilaments per unit width being at most 1,600/mm and the average number of fibers in the bundle being at most 1,000 in a region (I), and the drape level found in a region (II) being 120-240 mm. The continuous reinforcing fiber bundle has a length of at least 1 m and is characterized by the adhesion amount of a sizing agent (I) in the region (I) being 0.5-10% by weight and the drape level found in the region (II) being 120-240 mm. The continuous reinforcing fiber bundle has superior mechanical properties, formability into complex shapes, and continuous producibility.
    Type: Application
    Filed: January 17, 2019
    Publication date: November 5, 2020
    Inventors: Masaru Tateyama, Satoshi Seike, Mitsuki Fuse, Hiroshi Hirano, Akihiko Matsui, Kazuma Ura
  • Patent number: 10752755
    Abstract: This invention is a composition capable of forming a heat-dissipating member that has high heat resistance and high thermal conductivity. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: the other end of the first coupling agent and the other end of the second coupling agent are each bonded to a bifunctional or higher silsesquioxane by a curing treatment, as illustrated in FIG. 2; or at least one of the first coupling agent and the second coupling agent includes, in the structure thereof, a silsesquioxane, and the other end of the first coupling agent and the other end of the second coupling agent are bonded together as illustrated in FIG. 3.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 25, 2020
    Assignees: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi Fujiwara, Takayuki Hattori, Jyunichi Inagaki, Takafumi Kuninobu, Kazuhiro Takizawa, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota, Akinori Okada
  • Patent number: 10679922
    Abstract: The inventions are: a composition capable of forming a heat-dissipating member that has high thermal conductivity and in which the thermal expansion coefficient can be controlled; and a heat-dissipating member. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: at least one of the first coupling agent and the second coupling agent is a liquid crystal silane coupling agent; the other end of the first coupling agent and the other end of the second coupling agent each have a functional group bondable with one another; and the other end of the first coupling agent bonds with the other end of the second coupling agent by a curing treatment.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 9, 2020
    Assignees: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi Fujiwara, Jyunichi Inagaki, Masako Hinatsu, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota, Akinori Okada
  • Publication number: 20200123275
    Abstract: Provided are a polylactide-grafted cellulose nanofiber that is suitable as a molding material, and a production method thereof. A polylactide-grafted cellulose nanofiber includes grafted cellulose having a graft chain bonding to cellulose constituting a cellulose nanofiber, wherein the graft chain is a polylactide, and a ratio of an absorbance derived from C?O of the polylactide to an absorbance derived from O—H of the cellulose on an infrared absorption spectrum is no less than 0.01 and no greater than 1,000. In addition, a production method of a polylactide-grafted cellulose nanofiber includes carrying out graft polymerization of a lactide to cellulose constituting a cellulose nanofiber in the presence of an organic polymerization catalyst which includes an amine and a salt obtained by reacting the amine with an acid. As the organic polymerization catalyst, 4-dimethylaminopyridine and 4-dimethylaminopyridinium triflate are preferred.
    Type: Application
    Filed: May 9, 2018
    Publication date: April 23, 2020
    Applicants: OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, DAIO PAPER CORPORATION
    Inventors: Joji Kadota, Yasuyuki Agari, Hiroshi Hirano, Akinori Okada, Takaaki Imai
  • Publication number: 20190352474
    Abstract: A partially separated fiber bundle having a surface of a reinforcing fiber coated with a sizing agent containing a water-soluble polyamide-based resin, in which a separated fiber section consisting of a plurality of separated fiber bundles and an unseparated fiber section are provided alternately along a longitudinal direction of the reinforcing fiber bundle consisting of a plurality of single yarns, wherein the reinforcing fiber bundle contains 600 fibers/mm or more and less than 1,600 fibers/mm of fibers per unit width while the reinforcing fiber has a drape level of 120 mm or more and 240 mm or less.
    Type: Application
    Filed: January 26, 2018
    Publication date: November 21, 2019
    Inventors: Mitsuki Fuse, Masaru Tateyama, Hiroshi Hirano, Satoshi Seike, Akihiko Matsui, Kazuma Ura, Tetsuya Motohashi
  • Publication number: 20190055444
    Abstract: The present invention provides: a composition for low thermal expansion members, which is capable of forming a low thermal expansion member that has a thermal expansion coefficient close to those of the members within a semiconductor element, while having high heat resistance and high heat conductivity; and a low thermal expansion member. A composition for low thermal expansion members according to the present invention is characterized by containing: a heat conductive first inorganic filler that is bonded to one end of a first coupling agent; and a heat conductive second inorganic filler that is bonded to one end of a second coupling agent. This composition for low thermal expansion members is also characterized in that the first inorganic filler and the second inorganic filler are bonded to each other via the first coupling agent and the second coupling agent by means of a curing treatment.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 21, 2019
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: TAKESHI FUJIWARA, JYUNICHI INAGAKI, YASUYUKI AGARI, HIROSHI HIRANO, JOJI KADOTA, AKINORI OKADA
  • Patent number: 10202530
    Abstract: The present invention relates to a composition capable of forming a heat dissipating member having high thermal conductivity and a heat dissipating member. The composition for a heat dissipating member of the present invention is a composition for a heat dissipating member that includes a first inorganic filler having thermal conductivity that is bonded to one end of a coupling agent; a second inorganic filler having thermal conductivity that is bonded to one end of a coupling agent, in which a bifunctional or higher polymerizable compound is additionally bonded to the other end of the bonded coupling agent; wherein the other end of the coupling agent bonded to the first inorganic filler is to be bonded to the polymerizable compound on the second inorganic filler during curing.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: February 12, 2019
    Assignees: JNC CORPORATION, Osaka Research Institute of Industrial Science and Technology
    Inventors: Takeshi Fujiwara, Jyunichi Inagaki, Masako Hinatsu, Akinori Okada, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota
  • Publication number: 20190023847
    Abstract: This invention is a composition capable of forming a heat-dissipating member that has high heat resistance and high thermal conductivity. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: the other end of the first coupling agent and the other end of the second coupling agent are each bonded to a bifunctional or higher silsesquioxane by a curing treatment, as illustrated in FIG. 2; or at least one of the first coupling agent and the second coupling agent includes, in the structure thereof, a silsesquioxane, and the other end of the first coupling agent and the other end of the second coupling agent are bonded together as illustrated in FIG. 3.
    Type: Application
    Filed: February 28, 2017
    Publication date: January 24, 2019
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi FUJIWARA, TAKAYUKI HATTORI, JYUNICHI INAGAKI, TAKAFUMI KUNINOBU, Kazuhiro TAKIZAWA, YASUYUKI AGARI, HIROSHI HIRANO, JOJI KADOTA, AKINORI OKADA
  • Publication number: 20190023900
    Abstract: The inventions are: a composition capable of forming a heat-dissipating member that has high thermal conductivity and in which the thermal expansion coefficient can be controlled; and a heat-dissipating member. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: at least one of the first coupling agent and the second coupling agent is a liquid crystal silane coupling agent; the other end of the first coupling agent and the other end of the second coupling agent each have a functional group bondable with one another; and the other end of the first coupling agent bonds with the other end of the second coupling agent by a curing treatment.
    Type: Application
    Filed: February 28, 2017
    Publication date: January 24, 2019
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi FUJIWARA, Jyunichi INAGAKI, Masako HINATSU, Yasuyuki AGARI, Hiroshi HIRANO, Joji KADOTA, Akinori OKADA
  • Patent number: 10154549
    Abstract: A microwave oven includes: a cooker body in the shape of a box having a heating chamber with an opening at the front side thereof; a storage having a door which opens and closes the opening, and an inner box including two side plates, a bottom plate and a back plate connected to the door, the storage being movable to the front side and storing an object to be cooked; and a hot-air generating unit generating hot air. The hot-air generating unit is located at the outer side of a rear wall of a heating chamber, and an air outlet from which hot air is blown out is located on the rear wall at a position higher than the back plate.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: December 11, 2018
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tadashi Nasu, Akihiro Yoshidome, Masayuki Iwamoto, Junichi Takeuchi, Hiroshi Hirano
  • Patent number: 9938371
    Abstract: A composition capable of forming a heat-dissipation member having high thermal conductivity, and a heat-dissipation member. The composition for the heat-dissipation member of the present application contains a polymerizable liquid crystal compound having, at both terminals, a structure including an oxiranyl group or an oxetanyl group; a curing agent that cures the polymerizable liquid crystal compound; and an inorganic filler formed of nitride. A curing temperature of the composition for the heat-dissipation member is within or higher than the temperature range in which the polymerizable liquid crystal compound exhibits a liquid crystal phase, and within or lower than the temperature range in which the polymerizable liquid crystal compound exhibits an isotropic phase. The heat-dissipation member formed of such a composition can have excellent thermal conductivity owing to a synergistic effect between alignment of the liquid crystal compound and the inorganic filler formed of nitride.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: April 10, 2018
    Assignees: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi Fujiwara, Jyunichi Inagaki, Yukito Yada, Akinori Okada, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota