Patents by Inventor Hiroshi Horikawa

Hiroshi Horikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200190647
    Abstract: A method for manufacturing an Al—Si—Mg aluminum alloy casting material is provided. The method for manufacturing an Al—Si—Mg aluminum alloy casting material includes performing heat treatment on an Al—Si—Mg aluminum alloy casting material containing 5 mass % or larger and 10 mass % or smaller of Si, 0.2 mass % or larger and 1.0 mass % or smaller of Mg, 0.03 mass % or larger and 0.5 mass % or smaller of Sb, and 0.0004 mass % or larger and 0.0026 mass % or smaller of Be, and a remainder having an alloy composition including Al and unavoidable impurities.
    Type: Application
    Filed: March 27, 2018
    Publication date: June 18, 2020
    Inventors: Katsumi FUKAYA, Hiroshi HORIKAWA, Yutaro KITAKI, Makato OTSUKA, Tsutomu MASUDA, Naoaki YAMAMOTO
  • Patent number: 10508329
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: December 17, 2019
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Publication number: 20190186410
    Abstract: An aluminum alloy having excellent high temperature strength and thermal conductivity; and an internal combustion engine piston including the alloy. The aluminum alloy includes 11.0-13.0% Si, ?0.3% Fe, 0.3-2.0% Mg, 2.0-5.0% Cu, 3.0-4.0% Ni, 0.2-1.0% Mn, 0.05-0.4% Cr, and 0.05-0.4% V, with the remainder including aluminum and unavoidable impurities.
    Type: Application
    Filed: August 29, 2016
    Publication date: June 20, 2019
    Applicants: NIPPON LIGHT METAL COMPANY, LTD., ART METAL MFG. CO., LTD.
    Inventors: Izumi YAMAMOTO, Kazuhiro ODA, Hiroshi HORIKAWA, Katsumi FUKAYA, Takashi SEKI, Tadashi WATANABE
  • Publication number: 20190176270
    Abstract: A laser cutting and machining method for plated steel plated, when irradiating a laser beam LB on to the upper surface of a plated steel plate W and laser cutting and machining same: a plating layer-containing metal that has been melted and/or evaporated by the irradiation of the laser beam LB is caused to flow on to a cut surface of the plated steel plate W as a result of assist gas that is jetted towards a laser machining units; and the plating layer-containing metal is coated on the cut surface.
    Type: Application
    Filed: May 17, 2017
    Publication date: June 13, 2019
    Applicants: AMADA HOLDINGS CO., LTD., NISSHIN STEEL CO., LTD.
    Inventors: Hideo HARA, Masahito ITO, Masanori UEHARA, Hiroshi ASADA, Hirokazu SASAKI, Hiroshi HORIKAWA
  • Patent number: 9828660
    Abstract: A method for manufacturing an aluminum alloy casting includes obtaining the aluminum alloy casting by casting an aluminum alloy into a mold, performing solution heat treatment, rapidly cooling the casting, performing aging treatment, and cooling the casting. The aluminum alloy includes, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, and no more than 0.5% of Mn, and at least one component selected from the group consisting of 0.002 to 0.02% of Na, 0.002 to 0.02% of Ca and 0.002 to 0.02% of Sr, a remainder being Al and inevitable impurities. An internal combustion engine cylinder head is composed of the aluminum alloy casting and manufactured by the method of the casting. The aluminum alloy casting is suitable for applications requiring superior elongation, high cycle fatigue strength and high thermal fatigue strength.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 28, 2017
    Assignees: NISSAN MOTOR CO., LTD., NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Souda, Kouichi Akiyama, Hiroshi Horikawa, Masahiko Shioda
  • Publication number: 20170175078
    Abstract: This invention provides a cell culture substrate comprising on its surface a fluorine-containing polymer that enables three-dimensional tissue culture. The cell culture substrate of the invention has a surface at least a part of which is composed of a resin composition comprising a fluorine-containing polymer having one or more fluorine atoms in a repeating unit and exhibits the oxygen gas permeability of 219 cm3 (STP)/(m2·24 h·atm) or higher. Three-dimensional tissue can be formed via cell culture with the use of the cell culture substrate of the invention.
    Type: Application
    Filed: March 17, 2015
    Publication date: June 22, 2017
    Applicant: Nippon Shokubai, Co., Ltd.
    Inventors: Tomomi Makino, Hiroshi Horikawa
  • Patent number: 9353429
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 31, 2016
    Assignee: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 9222151
    Abstract: An aluminum alloy which is excellent in high temperature strength and heat conductivity by adjusting the composition to one keeping down the drop in high temperature strength and making the Mn content as small as possible to reduce the formation of a solid solution in the aluminum, which aluminum alloy having a composition of ingredients which contains Si: 12 to 16 mass %, N: 0.1 to 2.5 mass %, Cu: 3 to 5 mass %, Mg: 0.3 to 1.2 mass %, Fe: 0.3 to 1.5 mass %, and P: 0.004 to 0.02 mass % and furthermore 0 to 0.1 mass % of Mn and further contains, as necessary, at least one of V: 0.01 to 0.1 mass %, Zr: 0.01 to 0.6 mass %, Cr: 0.01 to 0.2 mass %, and Ti: 0.01 to 0.2 mass %. Also described is a method for producing the aluminum alloy melt.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: December 29, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Jie Xing, Izumi Yamamoto, Kazuhiro Oda, Yutaka Ishida, Hiroshi Horikawa
  • Patent number: 8999080
    Abstract: Disclosed are: a casting aluminum alloy that is excellent in elongation as alternative properties of a high cycle fatigue strength and a thermal fatigue strength and is suitably usable for a casting for which both of the excellent high cycle fatigue strength and the excellent thermal fatigue strength are required, for example, an internal combustion engine cylinder head; a casting made of the aluminum alloy; a manufacturing method of the casting; and further, an internal combustion engine cylinder head composed of the aluminum alloy casting and manufactured by the manufacturing method of the casting. The casting aluminum alloy contains, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, no more than 0.5% of Mn, and at least one component selected from the group consisting of Na, Ca and Sr, each mass ratio of which is 0.002 to 0.02%.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 7, 2015
    Assignees: Nissan Motor Co., Ltd., Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Souda, Kouichi Akiyama, Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 8936688
    Abstract: An aluminum alloy casting material for heat conducting is provided, wherein the thermal conductivity is improved of an aluminum alloy casting material whereof the castability is improved by the addition of silicon where said invention is characterized by being an aluminum alloy casting material with excellent thermal conductivity, comprising 5-10.0% by mass of silicon, 0.1-0.5% by mass of magnesium and the remainder comprising aluminum and inevitable impurities, and whereon aging treatment has been performed.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: January 20, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hiroshi Horikawa, Sanji Kitaoka, Masahiko Shioda, Toshihiro Suzuki, Takahiko Watai, Hidetoshi Kawada
  • Publication number: 20140182750
    Abstract: A method for manufacturing an aluminum alloy casting includes obtaining the aluminum alloy casting by casting an aluminum alloy into a mold, performing solution heat treatment, rapidly cooling the casting, performing aging treatment, and cooling the casting. The aluminum alloy includes, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, and no more than 0.5% of Mn, and at least one component selected from the group consisting of 0.002 to 0.02% of Na, 0.002 to 0.02% of Ca and 0.002 to 0.02% of Sr, a remainder being Al and inevitable impurities. An internal combustion engine cylinder head is composed of the aluminum alloy casting and manufactured by the method of the casting. The aluminum alloy casting is suitable for applications requiring superior elongation, high cycle fatigue strength and high thermal fatigue strength.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicants: NIPPON LIGHT METAL COMPANY, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Hiroshi SOUDA, Kouichi AKIYAMA, Hiroshi HORIKAWA, Masahiko SHIODA
  • Publication number: 20140048186
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 20, 2014
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Publication number: 20130115129
    Abstract: An aluminum alloy which is excellent in high temperature strength and heat conductivity by adjusting the composition to one keeping down the drop in high temperature strength and making the Mn content as small as possible to reduce the formation of a solid solution in the aluminum, which aluminum alloy having a composition of ingredients which contains Si: 12 to 16 mass %, N: 0.1 to 2.5 mass %, Cu: 3 to 5 mass %, Mg: 0.3 to 1.2 mass %, Fe: 0.3 to 1.5 mass %, and P: 0.004 to 0.02 mass % and furthermore 0 to 0.1 mass % of Mn and further contains, as necessary, at least one of V: 0.01 to 0.1 mass %, Zr: 0.01 to 0.6 mass %, Cr: 0.01 to 0.2 mass %, and Ti: 0.01 to 0.2 mass %. Also described is a method for producing the aluminum alloy melt.
    Type: Application
    Filed: July 6, 2011
    Publication date: May 9, 2013
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Jie Xing, Izumi Yamamoto, Kazuhiro Oda, Yutaka Ishida, Hiroshi Horikawa
  • Patent number: 8246763
    Abstract: A high strength aluminum alloy casting obtained by casting an aluminum alloy comprised of 7.5 to 11.5 wt % of Si, 3.8 to 4.8 wt % of Cu, 0.45 to 0.65 wt % of Mg, 0.4 to 0.7 wt % of Fe, 0.35 to 0.45 wt % of Mn, and the balance of Al and not more than 0.2 wt % of unavoidable impurities, wherein this aluminum alloy has 0.1 to 0.3 wt % of Ag added to it or contains 0.1 to 1.0 wt % of at least one element selected from the group of second additive elements comprised of Rb, K, Ba, Sr, Zr, Nb, Ta, V, and Pd and rare earth elements, and a method of production of a high strength aluminum alloy casting comprising the steps of filling a melt of an aluminum alloy in a mold to obtain a casting, taking out the aluminum alloy casting from the mold, solubilizing the high strength aluminum alloy casting by heating in a temperature range of 495 to 505° C.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: August 21, 2012
    Assignees: Denso Corporation, Nippon Light Metal Co., Ltd.
    Inventors: Kouji Yamada, Tomoyuki Hatano, Susumu Miyakawa, Hiromi Takagi, Hiroshi Horikawa, Akio Hashimoto
  • Publication number: 20120168041
    Abstract: An aluminum alloy casting material for heat conducting is provided, wherein the thermal conductivity is improved of an aluminum alloy casting material whereof the castability is improved by the addition of silicon where said invention is characterized by being an aluminum alloy casting material with excellent thermal conductivity, comprising 5-10.0% by mass of silicon, 0.1-0.5% by mass of magnesium and the remainder comprising aluminum and inevitable impurities, and whereon aging treatment has been performed.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 5, 2012
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi HORIKAWA, Sanji KITAOKA, Masahiko SHIODA, Toshihiro SUZUKI, Takahiko WATAI, Hidetoshi KAWADA
  • Publication number: 20120073796
    Abstract: The present invention provides an aluminum alloy for die castings that has superior castability and corrosion resistance. The amounts of Mn, Fe and Cu contained in the aluminum alloy components for die castings were determined to have a considerable effect on the corrosion resistance of the aluminum alloy. Therefore, the aluminum alloy for die castings of the present invention contains 9.0 to 12.0% by weight of Si, 0.20 to 0.80% by weight of Mg, and 0.7 to 1.1% by weight of Mn+Fe, the Mn/Fe ratio is 1.5 or more, the amount of Cu as impurity is controlled to 0.5% by weight or less, and the remainder is composed of aluminum and unavoidable impurities.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 29, 2012
    Applicant: DENSO CORPORATION
    Inventors: Takeshi Nagasaka, Tomoyuki Hatano, Hiromi Takagi, Yoshiki Tan, Masatoshi Koumura, Hiroshi Horikawa
  • Publication number: 20110132504
    Abstract: An aluminum alloy casting material for heat conduction obtained by adding Si to an aluminum alloy casting material with enhanced castability thereby realize enhancement of thermal conductivity. There is provided an aluminum alloy casting material excelling in heat conduction. characterized in that it comprises 5 to 10.0 mass % of Si, 0.1 to 0.5 mass % of Mg and the balance of Al and unavoidable impurities, the aluminum alloy casting material having undergone an aging treatment. Further, there is provided a cast aluminum alloy casting material that while having castability and mechanical strength equivalent to or higher than those of conventional cast aluminum alloys, is also enhanced in heat conduction; and provided a process for producing the cast aluminum alloy. In particular, there are provided a cast aluminum alloy and process for producing the same, wherein Si is contained in an amount of 6.0 to 8.0 mass %, the elements other than Si and Al each in simple form in an amount of ?0.
    Type: Application
    Filed: April 5, 2005
    Publication date: June 9, 2011
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Horikawa, Sanji Kitaoka, Masahiko Shioda, Toshihiro Suzuki, Takahiko Watai, Hidetoshi Kawada
  • Publication number: 20100192888
    Abstract: A high strength aluminum alloy casting obtained by casting an aluminum alloy comprised of 7.5 to 11.5 wt % of Si, 3.8 to 4.8 wt % of Cu, 0.45 to 0.65 wt % of Mg, 0.4 to 0.7 wt % of Fe, 0.35 to 0.45 wt % of Mn, and the balance of Al and not more than 0.2 wt % of unavoidable impurities, wherein this aluminum alloy has 0.1 to 0.3 wt % of Ag added to it or contains 0.1 to 1.0 wt % of at least one element selected from the group of second additive elements comprised of Rb, K, Ba, Sr, Zr, Nb, Ta, V, and Pd and rare earth elements, and a method of production of a high strength aluminum alloy casting comprising the steps of filling a melt of an aluminum alloy in a mold to obtain a casting, taking out the aluminum alloy casting from the mold, solubilizing the high strength aluminum alloy casting by heating in a temperature range of 495 to 505° C.
    Type: Application
    Filed: April 1, 2010
    Publication date: August 5, 2010
    Applicants: DENSO CORPORATION, Nippon Light Metal Co., Ltd.
    Inventors: Kouji Yamada, Tomoyuki Hatano, Susumu Miyakawa, Hiromi Takagi, Hiroshi Horikawa, Akio Hashimoto
  • Publication number: 20100108209
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Application
    Filed: February 27, 2007
    Publication date: May 6, 2010
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 7630836
    Abstract: Novel polynucleotides derived from microorganisms belonging to actinomycetes and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: December 8, 2009
    Assignees: The Kitasato Institute, National Institute of Technology and Evaluation
    Inventors: Satoshi Omura, Haruo Ikeda, Jun Ishikawa, Hiroshi Horikawa, Tadayoshi Shiba, Yoshiyuki Sakaki, Masahira Hattori