Patents by Inventor Hiroshi Kanasaki

Hiroshi Kanasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9931715
    Abstract: A test piece preparation step of preparing a test piece (50) including a welding structure in which a welding material formed of an austenitic alloy is welded to a member formed of low-alloy steel or low-carbon steel, a hydrogen supply step of supplying hydrogen to the test piece (50), and a characteristic stress acquisition step of applying a load (F) to the test piece (50) to which hydrogen was supplied and acquiring a characteristic stress showing material mechanical properties of the test piece (50) are executed.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: April 3, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Kanasaki, Naoki Ogawa, Takaharu Maeguchi, Takao Tsuruta, Takafumi Hiro, Tomoyuki Inoue, Kosuke Kitamura, Tomohisa Ota
  • Patent number: 9741523
    Abstract: According to one embodiment, an X-ray tube includes an elongated anode target, a cathode, and a vacuum envelope. The cathode includes an electron emission source and a converging electrode including a trench portion. The trench portion includes a closest inner circumferential wall, an upper inner circumferential wall, and a lower inner circumferential wall. The electron emission source projects towards a opening of the trench portion from a boundary between the closest inner circumferential wall and the upper inner circumferential wall.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: August 22, 2017
    Assignee: Toshiba Electron Tubes & Devices Co., Ltd.
    Inventors: Hiroshi Kanasaki, Hideyuki Takahashi, Keiichi Mimori, Masataka Ueki
  • Patent number: 9573246
    Abstract: A condition setting process of determining peening conditions for water jet peening on a peening target object, an analysis process of analyzing a jet when a liquid is jetted from a nozzle model to a peening target object model and obtaining a void rate that is a volume rate of air bubbles contained in a unit volume of the liquid and a collapse rate that is a volume of the air bubbles collapsing in a unit time in the unit volume of the liquid in each position on a surface of the peening target object model, a shock pressure correlation value calculation process of obtaining a shock pressure correlation value that is a product of the void rate and the collapse rate in each position, and a range calculation process of obtaining an effective processing range in which the shock pressure correlation value on the surface of the peening target object model is greater than a predetermined value, based on the shock pressure correlation value in each position.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: February 21, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takaharu Maeguchi, Takahiro Ota, Tomoshige Takata, Hideki Madokoro, Hiroshi Kanasaki, Nobuyuki Hori
  • Publication number: 20160279739
    Abstract: A test piece preparation step of preparing a test piece (50) including a welding structure in which a welding material formed of an austenitic alloy is welded to a member formed of low-alloy steel or low-carbon steel, a hydrogen supply step of supplying hydrogen to the test piece (50), and a characteristic stress acquisition step of applying a load (F) to the test piece (50) to which hydrogen was supplied and acquiring a characteristic stress showing material mechanical properties of the test piece (50) are executed.
    Type: Application
    Filed: November 18, 2014
    Publication date: September 29, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Kanasaki, Naoki Ogawa, Takaharu Maeguchi, Takao Tsuruta, Takafumi Hiro, Tomoyuki Inoue, Kosuke Kitamura, Tomohisa Ota
  • Publication number: 20160099128
    Abstract: According to one embodiment, an X-ray tube includes an elongated anode target, a cathode, and a vacuum envelope. The cathode includes an electron emission source and a converging electrode including a trench portion. The trench portion includes a closest inner circumferential wall, an upper inner circumferential wall, and a lower inner circumferential wall. The electron emission source projects towards a opening of the trench portion from a boundary between the closest inner circumferential wall and the upper inner circumferential wall.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 7, 2016
    Applicants: KABUSHIKI KAISHA TOSHIBA, Toshiba Electron Tubes & Devices Co., Ltd.
    Inventors: Hiroshi KANASAKI, Hideyuki Takahashi, Keiichi Mimori, Masataka Ueki
  • Publication number: 20150151405
    Abstract: A condition setting process of determining peening conditions for water jet peening on a peening target object, an analysis process of analyzing a jet when a liquid is jetted from a nozzle model to a peening target object model and obtaining a void rate that is a volume rate of air bubbles contained in a unit volume of the liquid and a collapse rate that is a volume of the air bubbles collapsing in a unit time in the unit volume of the liquid in each position on a surface of the peening target object model, a shock pressure correlation value calculation process of obtaining a shock pressure correlation value that is a product of the void rate and the collapse rate in each position, and a range calculation process of obtaining an effective processing range in which the shock pressure correlation value on the surface of the peening target object model is greater than a predetermined value, based on the shock pressure correlation value in each position.
    Type: Application
    Filed: November 13, 2014
    Publication date: June 4, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takaharu Maeguchi, Takahiro Ota, Tomoshige Takata, Hideki Madokoro, Hiroshi Kanasaki, Nobuyuki Hori
  • Publication number: 20130316191
    Abstract: A welding structure (30A) includes a welding layer (60A) which is configured of a first built-up layer (33) which is formed of low-alloy steel or carbon steel having a carbon content of less than low-alloy steel and which is formed on a base metal (31), a second built-up layer (34) which is formed of a 600-type nickel-based alloy and which is formed on the first built-up layer (33) and a third built-up layer (35) which is formed of a 690-type nickel-based alloy and which is formed on the second built-up layer (34).
    Type: Application
    Filed: January 27, 2012
    Publication date: November 28, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji Kawasaki, Masahiko Toyoda, Hiroshi Kanasaki, Tomoyuki Inoue, Takafumi Hiro, Seiichi Kawaguchi, Kosuke Kitamura, Tomohisa Ota, Nobutaka Nakajima
  • Patent number: 8172959
    Abstract: There are provided an austenitic stainless steel having high stress corrosion crack resistance, characterized by containing, in percent by weight, 0.030% or less C, 0.1% or less Si, 2.0% or less Mn, 0.03% or less P, 0.002% or less S, 11 to 26% Ni, 17 to 30% Cr, 3% or less Mo, and 0.01% or less N, the balance substantially being Fe and unavoidable impurities; a manufacturing method for an austenitic stainless steel, characterized in that a billet consisting of the said austenitic stainless steel is subjected to solution heat treatment at a temperature of 1000 to 1150° C.; and a pipe and a in-furnace structure for a nuclear reactor to which the said austenitic stainless steel is applied.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: May 8, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Tokyo Electric Power Company, Inc.
    Inventors: Yasuhiro Sakaguchi, Toshihiko Iwamura, Hiroshi Kanasaki, Hidehito Mimaki, Masaki Taneike, Shunichi Suzuki, Kenrou Takamori, Suguru Ooki, Naoki Anahara, Naoki Hiranuma, Toshio Yonezawa
  • Publication number: 20080308198
    Abstract: There are provided an austenitic stainless steel having high stress corrosion crack resistance, characterized by containing, in percent by weight, 0.030% or less C, 0.1% or less Si, 2.0% or less Mn, 0.03% or less P, 0.002% or less S, 11 to 26% Ni, 17 to 30% Cr, 3% or less Mo, and 0.01% or less N, the balance substantially being Fe and unavoidable impurities; a manufacturing method for an austenitic stainless steel, characterized in that a billet consisting of the said austenitic stainless steel is subjected to solution heat treatment at a temperature of 1000 to 1150° C.; and a pipe and a in-furnace structure for a nuclear reactor to which the said austenitic stainless steel is applied.
    Type: Application
    Filed: January 13, 2005
    Publication date: December 18, 2008
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE TOKYO ELECTRIC POWER COMPANY, INC.
    Inventors: Yasuhiro Sakaguchi, Toshihiko Iwamura, Hiroshi Kanasaki, Hidehito Mimaki, Masaki Taneike, Shunichi Suzuki, Kenrou Takamori, Suguru Ooki, Naoki Anahara, Naoki Hiranuma, Toshio Yonezawa
  • Patent number: 7292122
    Abstract: A surface acoustic wave (SAW) filter includes a piezoelectric substrate, a first interdigital transducer (IDT) for input and a second IDT for output that are provided on the piezoelectric substrate, the first IDT and the second IDT being arranged in a propagation direction, and a shield electrode arranged between the first IDT and the second IDT and/or between interconnection lines that connect the first IDT and the second IDT, at least one of the first IDT and the second IDT being of a longitudinal coupling multi-mode type having a balanced operation. Thus, it is possible to suppress a stray capacitance between the first IDT and the second IDT, and thereby to improve the symmetry of balanced operation signals.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: November 6, 2007
    Assignee: Fujitsu Media Devices Limited
    Inventors: Hiroshi Kanasaki, Osamu Kawachi
  • Publication number: 20050110599
    Abstract: A surface acoustic wave (SAW) filter includes a piezoelectric substrate, a first interdigital transducer (IDT) for input and a second IDT for output that are provided on the piezoelectric substrate, the first IDT and the second IDT being arranged in a propagation direction, and a shield electrode arranged between the first IDT and the second IDT and/or between interconnection lines that connect the first IDT and the second IDT, at least one of the first IDT and the second IDT being of a longitudinal coupling multi-mode type having a balanced operation. Thus, it is possible to suppress a stray capacitance between the first IDT and the second IDT, and thereby to improve the symmetry of balanced operation signals.
    Type: Application
    Filed: November 19, 2004
    Publication date: May 26, 2005
    Inventors: Hiroshi Kanasaki, Osamu Kawachi
  • Patent number: 6428925
    Abstract: A battery pack having a plurality of battery cells stored side by side in a case. The case, in particular, includes a bottomed trough and a lid, the trough having a space as a cell storage portion defined between inner and outer wall portions paired to form a loop and a space as a hollow surrounded by the inner wall portion and penetrating the trough from top to bottom, the lid closing a top opening of the cell storage portion. The battery cells are arranged in a loop along the inner and outer wall portions, whereby a rise and variation in their temperature can be restrained.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: August 6, 2002
    Assignee: Toshiba Battery Co., Ltd.
    Inventors: Kazuta Takeno, Yukinori Akamoto, Haruhiko Tanaka, Kazumi Sato, Kiyoshi Ishitsuka, Hiroshi Kanasaki
  • Patent number: 5976275
    Abstract: The present invention aims at providing structural materials having a resistance to degradation by neutron irradiation, causing no SCC in an environment of light-water reactors even after subjecting the materials to neutron irradiation of approximately at least 1.times.10.sup.22 n/cm.sup.2 (E>1 MeV), and having thermal expansion coefficients approximately similar to that of structural materials. The high nickel austenitic stainless steels of the present invention having a resistance to degradation by neutron irradiation can be produced by subjecting stainless steels having compositions (by weight %) of 0.005 to 0.08% of carbon, at most 0.3% of Mn, at most 0.2% of (Si+P+S), 25 to 40% of Ni, 25 to 40% of Cr, at most 3% of Mo or at most 5% of (Mo+W), at most 0.3% of Nb+Ta, at most 0.3% of Ti, at most 0.001% of B and the balance of Fe to a solution-annealing treatment at a temperature of 1000 to 1150.degree. C.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: November 2, 1999
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Toshio Yonezawa, Toshihiko Iwamura, Hiroshi Kanasaki, Koji Fujimoto, Shizuo Nakada, Kazuhide Ajiki, Mitsuhiro Nakamura