Patents by Inventor Hiroshi Oshita

Hiroshi Oshita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220235428
    Abstract: An object of the present disclosure is to make it possible to allow an operator or the like to grasp a carbon potential value of an atmosphere in a heat treatment furnace more simply. A heat treatment furnace (10) according to one aspect of the present disclosure includes a carbon potential value deriving section configured to derive a carbon potential value of an atmosphere in a heat treatment chamber on a basis of output of a gas sensor, and output of a temperature sensor, and a first display section configured to display the derived carbon potential value (P1) on a graph D that is displayed in a first display area (41A), and has a first axis representing carbon potential values, and a second axis representing temperatures and crossing the first axis.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Shinichi TAKAHASHI, Kiichi KANDA, Hiroshi OSHITA, Takashi NINOMIYA
  • Publication number: 20120202344
    Abstract: To provide a technology capable of preventing corrosion of a Cu wiring and thereby improving a production yield of a semiconductor device, a manufacturing method of a semiconductor device includes the steps of: removing a portion of a Cu film other than that in a wiring trench in a semiconductor substrate by CMP using a polishing slurry, removing a portion of a barrier metal film other than that in the, wiring trench by CMP using a polishing slurry containing an anticorrosive, polishing the surface of the Cu film and the surface of the barrier metal film by CMP using pure water, thereafter cleaning the semiconductor substrate with pure water without applying an anticorrosive thereto or without cleaning it with a chemical liquid, and thereafter cleaning the semiconductor substrate with a chemical liquid without applying an anticorrosive thereto.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 9, 2012
    Inventors: Masaru NOZUE, Hiroshi OSHITA, Hiroyuki MASUDA, Hiroki TAKEWAKA
  • Patent number: 8187966
    Abstract: A Cu-CMP step applied to processes for 130 nm, 90 nm, and 65 nm technical nodes or the like mainly employs slurry to which an anticorrosive agent is added for preventing corrosion of Cu wiring. The inventors of the present application have studied and clearly found that in the Cu-CMP step using the slurry with the anticorrosive agent added thereto, the anticorrosive agent often forms complexes with Cu, which remain as foreign matter on a wafer in large quantity, leading to a reduction in yield, and in reliability of TDDB characteristics of the Cu wiring. In the invention of the present application, a post-CMP cleaning process involves applying wet cleaning to a wafer by supplying a cleaning solution, such as a chemical solution or pure water, to a device surface of the wafer substantially in a vertical direction with respect to the horizontal device surface, while rotating the wafer substantially about its center in the horizontal plane.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 29, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroyuki Masuda, Hiroshi Oshita, Nobuhiro Konishi
  • Publication number: 20110121419
    Abstract: A method for manufacturing a magnetic memory device which includes a TMR element, and the method includes: a step of forming a lower wiring layer; a step of forming an interlayer insulating layer on the lower wiring layer; a step of forming an opening in the interlayer insulating layer so that the lower wiring layer is exposed; a step of forming a barrier metal layer so that the interlayer insulating layer and an inner surface of the opening are covered; a step of forming a metal layer on the barrier metal layer so that the opening is embedded; a polishing step of removing the metal layer on the barrier metal layer through polishing using the barrier metal layer as a stopper so that a wiring layer that includes a metal layer being embedded in the opening and the barrier metal layer is formed; and an element fabricating step of fabricating a TMR element on the wiring layer.
    Type: Application
    Filed: February 4, 2011
    Publication date: May 26, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Shuichi UENO, Haruo Furuta, Ryoji Matsuda, Tatsuya Fukumura, Shin Hasegawa, Shinya Hirano, Hiroyuki Chibahara, Hiroshi Oshita
  • Patent number: 7906346
    Abstract: A method for manufacturing a magnetic memory device which includes a TMR element, and the method includes: a step of forming a lower wiring layer; a step of forming an interlayer insulating layer on the lower wiring layer; a step of forming an opening in the interlayer insulating layer so that the lower wiring layer is exposed; a step of forming a barrier metal layer so that the interlayer insulating layer and an inner surface of the opening are covered; a step of forming a metal layer on the barrier metal layer so that the opening is embedded; a polishing step of removing the metal layer on the barrier metal layer through polishing using the barrier metal layer as a stopper so that a wiring layer that includes a metal layer being embedded in the opening and the barrier metal layer is formed; and an element fabricating step of fabricating a TMR element on the wiring layer.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 15, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Shuichi Ueno, Haruo Furuta, Ryoji Matsuda, Tatsuya Fukumura, Shin Hasegawa, Shinya Hirano, Hiroyuki Chibahara, Hiroshi Oshita
  • Patent number: 7704329
    Abstract: A semiconductor substrate cleaning method includes a first cleaning step of cleaning the surface of a semiconductor substrate with the use of a first brush and a second cleaning step of cleaning the surface of the semiconductor substrate with the use of a second brush after the first cleaning step. The second cleaning step is performed under a condition that suppresses recontamination of the surface of the semiconductor substrate in comparison with the first cleaning step.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: April 27, 2010
    Assignee: Panasonic Corporation
    Inventors: Kenji Kobayashi, Hiroshi Oshita
  • Publication number: 20090286392
    Abstract: A Cu-CMP step applied to processes for 130 nm, 90 nm, and 65 nm technical nodes or the like mainly employs slurry to which an anticorrosive agent is added for preventing corrosion of Cu wiring. The inventors of the present application have studied and clearly found that in the Cu-CMP step using the slurry with the anticorrosive agent added thereto, the anticorrosive agent often forms complexes with Cu, which remain as foreign matter on a wafer in large quantity, leading to a reduction in yield, and in reliability of TDDB characteristics of the Cu wiring. In the invention of the present application, a post-CMP cleaning process involves applying wet cleaning to a wafer by supplying a cleaning solution, such as a chemical solution or pure water, to a device surface of the wafer substantially in a vertical direction with respect to the horizontal device surface, while rotating the wafer substantially about its center in the horizontal plane.
    Type: Application
    Filed: March 25, 2009
    Publication date: November 19, 2009
    Inventors: Hiroyuki Masuda, Hiroshi Oshita, Nobuhiro Konishi
  • Publication number: 20090039451
    Abstract: A method for manufacturing a magnetic memory device which includes a TMR element, and the method includes: a step of forming a lower wiring layer; a step of forming an interlayer insulating layer on the lower wiring layer; a step of forming an opening in the interlayer insulating layer so that the lower wiring layer is exposed; a step of forming a barrier metal layer so that the interlayer insulating layer and an inner surface of the opening are covered; a step of forming a metal layer on the barrier metal layer so that the opening is embedded; a polishing step of removing the metal layer on the barrier metal layer through polishing using the barrier metal layer as a stopper so that a wiring layer that includes a metal layer being embedded in the opening and the barrier metal layer is formed; and an element fabricating step of fabricating a TMR element on the wiring layer.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 12, 2009
    Inventors: Shuichi UENO, Haruo Furuta, Ryoji Matsuda, Tatsuya Fukumura, Shin Hasegawa, Shinya Hirano, Hiroyuki Chibahara, Hiroshi Oshita
  • Publication number: 20070181153
    Abstract: A semiconductor substrate cleaning method includes a first cleaning step of cleaning the surface of a semiconductor substrate with the use of a first brush and a second cleaning step of cleaning the surface of the semiconductor substrate with the use of a second brush after the first cleaning step. The second cleaning step is performed under a condition that suppresses recontamination of the surface of the semiconductor substrate in comparison with the first cleaning step.
    Type: Application
    Filed: February 6, 2007
    Publication date: August 9, 2007
    Inventors: Kenji Kobayashi, Hiroshi Oshita
  • Patent number: 6838371
    Abstract: At the time of performing a polishing process on a tungsten film and a silicon oxide film, based on the relation between a residual step and pattern density preliminarily obtained while changing polishing parameters, from pattern density of plugs in the polishing step and a predetermined residual step required, polishing parameters are determined so that a residual step does not exceed a predetermined residual step “h”. With the determined polishing parameters, the polishing process is performed on the tungsten film and the silicon oxide film so that the films are planarized, and plugs are formed in contact holes. As a result, a semiconductor device in which a step does not exceeds a predetermined residual step by a polishing process is obtained.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 4, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Takashi Watadani, Hiroshi Oshita
  • Publication number: 20040192035
    Abstract: At the time of performing a polishing process on a tungsten film and a silicon oxide film, based on the relation between a residual step and pattern density preliminarily obtained while changing polishing parameters, from pattern density of plugs in the polishing step and a predetermined residual step required, polishing parameters are determined so that a residual step does not exceed a predetermined residual step “h”. With the determined polishing parameters, the polishing process is performed on the tungsten film and the silicon oxide film so that the films are planarized, and plugs are formed in contact holes. As a result, a semiconductor device in which a step does not exceeds a predetermined residual step by a polishing process is obtained.
    Type: Application
    Filed: September 4, 2003
    Publication date: September 30, 2004
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventors: Takashi Watadani, Hiroshi Oshita
  • Patent number: 4399390
    Abstract: A built-in starter type fluorescent lamp socket in which the starter is entirely incorporated with the socket with no protruding parts and in which it is not necessary to replace the starter. The socket includes a socket body, pairs of starter contacts and power source contacts operatively positioned in the socket body for making connection with fluorescent lamp pins, and an electronic starter positioned in the socket body and connected to the starter contacts. The electronic starter includes a non-linear dielectric element and a thyristor coupled in parallel and across the starter contacts. The anode of the thyristor is coupled through a Zener diode to the common connection point between voltage division resistors also coupled across the starter contacts. The socket body may include a casing having lamp pin inserting holes and a cover for covering the rear side of the casing wherein the cover may be shaped in the form of a box in which the electronic starter is mounted.
    Type: Grant
    Filed: December 12, 1980
    Date of Patent: August 16, 1983
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hiroshi Oshita, Hiromi Adachi, Kazunari Inoue