Patents by Inventor Hiroshi Senoh

Hiroshi Senoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369564
    Abstract: Provided is an electrode mixture used for an all-solid-state sodium storage battery that can maintain a high discharging capacity in a room temperature environment and exhibit excellent charge-discharge cycle characteristics. Further provided is a storage battery comprising the same. An object of the present invention is to provide an electrode mixture used for an all-solid-state sodium storage battery, the electrode mixture comprising an active material, wherein the active material is a cluster formed of polyphosphate acid transition metal oxide with a plurality of individual particles connected together, each particle having a particle size within the range of 0.1 ?m to 100 ?m.
    Type: Application
    Filed: September 3, 2021
    Publication date: November 16, 2023
    Inventors: Taichi SAKAMOTO, Yuta IKEUCHI, Takashi MUKAI, Hiroshi SENOH, Hideaki TANAKA, Masahiro YANAGIDA, Hideo YAMAUCHI, I, Junichi IKEJIRI, Kei TSUNODA, Ayumu TANAKA, Fumio SATO
  • Publication number: 20220280902
    Abstract: A slurry storage device that stores an aqueous slurry containing a high nickel material prepared by a dispersion device which mixes a powder and a solvent, the device includes a holding unit that holds the aqueous slurry, and a pH value rise suppressing unit that suppresses a rise in a pH value of the aqueous slurry.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 8, 2022
    Inventors: Keiichiro Onishi, Keiichi Asami, Takashi Mukai, Taichi Sakamoto, Hideaki Tanaka, Hiroshi Senoh, Masahiro Yanagida
  • Patent number: 10906869
    Abstract: An organic sulfur material comprising carbon, hydrogen, oxygen, and sulfur as constituent elements, and having peaks in the vicinity of 482 cm?1, 846 cm?1, 1066 cm?1, 1279 cm?1, and 1442 cm?1 in a Raman spectrum detected by Raman spectroscopy, the peak in the vicinity of 1442 cm?1 being most intense, has a high capacity and high heat resistance, although a liquid organic starting material is used.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 2, 2021
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Senoh, Toshikatsu Kojima, Nobuhiko Takeichi, Hisanori Ando
  • Patent number: 10862120
    Abstract: By using a potassium ion secondary battery positive electrode active material comprising a potassium compound represented by general formula (1): KnMOm, wherein M is copper or iron, n is 0.5 to 3.5, and m is 1.5 to 2.5, provided is a potassium ion secondary battery positive electrode active material having higher theoretical discharge capacity and higher effective capacity than a potassium secondary battery using Prussian blue as a positive electrode active material.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: December 8, 2020
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Titus Nyamwaro Masese, Masahiro Shikano, Hikari Sakaebe, Hiroshi Senoh, Hikaru Sano
  • Patent number: 10811684
    Abstract: Provided is a material that can be used as a potassium secondary battery positive electrode active material (particularly a potassium ion secondary battery positive electrode active material), other than Prussian blue, by using a potassium compound and a potassium ion secondary battery positive electrode active material comprising the potassium compound, the potassium compound being represented by general formula (1): KnAkBOm, wherein A is a positive divalent element in groups 7 to 11 of the periodic table; B is positive tetravalent silicon, germanium, titanium or manganese, excluding a case in which A is manganese and B is titanium, and a case in which A is cobalt and B is silicon; n is 1.5 to 2.5; and m is 3.5 to 4.5.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: October 20, 2020
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Titus Nyamwaro Masese, Masahiro Shikano, Hikari Sakaebe, Hiroshi Senoh, Hikaru Sano
  • Publication number: 20190067696
    Abstract: Provided is a material that can be used as a potassium secondary battery positive electrode active material (particularly a potassium ion secondary battery positive electrode active material), other than Prussian blue, by using a potassium compound and a potassium ion secondary battery positive electrode active material comprising the potassium compound, the potassium compound being represented by general formula (1): KnAkBOm, wherein A is a positive divalent element in groups 7 to 11 of the periodic table; B is positive tetravalent silicon, germanium, titanium or manganese, excluding a case in which A is manganese and B is titanium, and a case in which A is cobalt and B is silicon; n is 1.5 to 2.5; and m is 3.5 to 4.5.
    Type: Application
    Filed: December 7, 2016
    Publication date: February 28, 2019
    Inventors: Titus Nyamwaro Masese, Masahiro Shikano, Hikari Sakaebe, Hiroshi Senoh, Hikaru Sano
  • Publication number: 20190067692
    Abstract: By using a potassium ion secondary battery positive electrode active material comprising a potassium compound represented by general formula (1): KnMm, wherein M is copper or iron, n is 0.5 to 3.5, and m is 1.5 to 2.5, provided is a potassium ion secondary battery positive electrode active material having higher theoretical discharge capacity and higher effective capacity than a potassium secondary battery using Prussian blue as a positive electrode active material.
    Type: Application
    Filed: December 7, 2016
    Publication date: February 28, 2019
    Inventors: Titus Nyamwaro Masese, Masahiro Shikano, Hikari Sakaebe, Hiroshi Senoh, Hikaru Sano
  • Publication number: 20180065927
    Abstract: An organic sulfur material comprising carbon, hydrogen, oxygen, and sulfur as constituent elements, and having peaks in the vicinity of 482 cm?1, 846 cm?1, 1066 cm?1, 1279 cm?1, and 1442 cm?1 in a Raman spectrum detected by Raman spectroscopy, the peak in the vicinity of 1442 cm?1 being most intense, has a high capacity and high heat resistance, although a liquid organic starting material is used.
    Type: Application
    Filed: March 31, 2016
    Publication date: March 8, 2018
    Inventors: Hiroshi Senoh, Toshikatsu Kojima, Nobuhiko Takeichi, Hisanori Ando
  • Patent number: 9337476
    Abstract: The present invention provides a process for producing a lithium sulfide-carbon composite, the process comprising placing a mixture of lithium sulfide and a carbon material having a specific surface area of 60 m2/g or more in an electrically-conductive mold in a non-oxidizing atmosphere, and applying a pulsed direct current to the mold while pressurizing the mixture in a non-oxidizing atmosphere, thereby subjecting the lithium sulfide and the carbon material to heating reaction; and a lithium sulfide-carbon composite obtained by this process, the composite having a carbon content of 15 to 70 weight %, and a tap density of 0.4 g/cm3 or more when the carbon content is 30 weight % or more, or a tap density of 0.5 g/cm3 or more when the carbon content is less than 30 weight %.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: May 10, 2016
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Tomonari Takeuchi, Hikari Sakaebe, Tetsuo Sakai, Kuniaki Tatsumi, Hiroshi Senoh, Hiroyuki Kageyama, Mitsuharu Tabuchi
  • Publication number: 20120196182
    Abstract: The present invention provides a positive electrode active material for nonaqueous solvent secondary batteries, comprising, as an active ingredient, a 1,4-benzoquinone compound having lower alkoxy groups as substitutes, and a nonaqueous secondary battery comprising the positive electrode active material as a constituent. According to the invention, a nonaqueous secondary battery having a high energy density and excellent cycle characteristics can be obtained by using a positive electrode active material composed of an organic compound with a low environmental load.
    Type: Application
    Filed: October 26, 2010
    Publication date: August 2, 2012
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLGOY
    Inventors: Masaru Yao, Hiroshi Senoh, Kazuaki Yasuda
  • Publication number: 20110171537
    Abstract: The present invention provides a process for producing a lithium sulfide-carbon composite, the process comprising placing a mixture of lithium sulfide and a carbon material having a specific surface area of 60 m2/g or more in an electrically-conductive mold in a non-oxidizing atmosphere, and applying a pulsed direct current to the mold while pressurizing the mixture in a non-oxidizing atmosphere, thereby subjecting the lithium sulfide and the carbon material to heating reaction; and a lithium sulfide-carbon composite obtained by this process, the composite having a carbon content of 15 to 70 weight %, and a tap density of 0.4 g/cm3 or more when the carbon content is 30 weight % or more, or a tap density of 0.5 g/cm3 or more when the carbon content is less than 30 weight %.
    Type: Application
    Filed: August 24, 2009
    Publication date: July 14, 2011
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE TECHNOLOGY
    Inventors: Tomonari Takeuchi, Hikari Sakaebe, Tetsuo Sakai, Kuniaki Tatsumi, Hiroshi Senoh, Hiroyuki Kageyama, Mitsuharu Tabuchi