Patents by Inventor Hirosuke Naruto

Hirosuke Naruto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9293752
    Abstract: The present invention provides a multilayer porous membrane having both high safety and practicality, especially as a separator for a non-aqueous electrolyte battery and comprising a porous layer containing an inorganic filler and a resin binder on at least one surface of a polyolefin resin porous membrane, wherein the porous layer simultaneously satisfies the following (A) to (C): (A) the inorganic filler has an average particle diameter of 0.1 ?m or more and 3.0 ?m or less, (B) a ratio of an amount of the resin binder to a total amount of the inorganic filler and the resin binder is 1% or more and 8% or less in terms of volume fraction, and (C) a ratio of a layer thickness of the porous layer to a total layer thickness is 15% or more and 50% or less.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: March 22, 2016
    Assignee: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Hiroshi Murata, Hirosuke Naruto
  • Patent number: 9070935
    Abstract: Provided is a multilayer porous film having a porous film comprised of a resin composition comprising a polypropylene and one or more polyolefins other than polypropylenes and an inorganic filler-containing porous layer stacked on at least on one side of the porous film. The multilayer porous film is capable of preventing short circuit between two electrodes even when a heat generation amount is large at the time of abnormal heat generation and therefore satisfying both excellent heat resistance and good shutdown function.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: June 30, 2015
    Assignee: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Hiroshi Murata, Hidenori Iwasawa, Hirosuke Naruto
  • Patent number: 8383409
    Abstract: The invention is directed to methods for the propagation or cultivation of cells including preparing a cell culture substrate, wherein the cell culture substrate includes a substrate and a layer formed by surface modification. The layer includes a polymer containing an amino group. The polymer is produced by reacting a polymer represented by formula (II): with a polymer having at least one amino group, —NH2, capable of forming a Schiff base in a monomer of formula (II), thereby forming a polymer layer constituting the layer formed by surface modification. “n” in Formula (II) is 0 or a positive integer, and m is a positive integer. n and m represent the degree of polymerization. Formula (II) is formed by chemical vapor deposition of formyl[2.2]paracyclophane. The methods further include providing cells in a medium; inoculating the cells onto the cell culture substrate; and culturing the cells, wherein the cells adhere to the cell culture substrate.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: February 26, 2013
    Assignees: Kisco Ltd., Daisan Kasei Co., Ltd., The University of Tokyo
    Inventors: Shin Ohya, Takashi Inoue, Takatoki Yamamoto, Teruo Fujii, Yasuyuki Sakai, Masaki Nishikawa, Hitomi Sakai, Hirosuke Naruto
  • Publication number: 20110136234
    Abstract: A cell culture substrate which is durable and which can be readily produced in commercial scale at a low cost, and its production method are provided. The cell culture substrate comprises a substrate and a layer formed by surface modification, which comprises a polymer containing amino group produced by reacting a polymer represented by the following formula (II): (wherein n is 0 or a positive integer, and m is a positive integer, the n and m representing degree of polymerization) formed by chemical vapor deposition of formyl[2.2]paracyclophane represented by the following formula (I): (wherein k is 0 or 1) with a polymer having at least one amino group (—NH2) capable of forming Schiff base in its monomer. The production method of the cell culture substrate comprises the step of synthesizing such polymer on the substrate.
    Type: Application
    Filed: February 3, 2011
    Publication date: June 9, 2011
    Inventors: Shin OHYA, Takashi Inoue, Takatoki Yamamoto, Teruo Fujii, Yasuyuki Sakai, Masaki Nishikawa, Hitomi Sakai, Hirosuke Naruto
  • Publication number: 20100285348
    Abstract: The present invention provides a multilayer porous membrane having both high safety and practicality, especially as a separator for a non-aqueous electrolyte battery and comprising a porous layer containing an inorganic filler and a resin binder on at least one surface of a polyolefin resin porous membrane, wherein the porous layer simultaneously satisfies the following (A) to (C): (A) the inorganic filler has an average particle diameter of 0.1 ?m or more and 3.0 ?m or less, (B) a ratio of an amount of the resin binder to a total amount of the inorganic filler and the resin binder is 1% or more and 8% or less in terms of volume fraction, and (C) a ratio of a layer thickness of the porous layer to a total layer thickness is 15% or more and 50% or less.
    Type: Application
    Filed: January 23, 2008
    Publication date: November 11, 2010
    Inventors: Hiroshi Murata, Hirosuke Naruto
  • Publication number: 20090042295
    Abstract: A cell culture substrate which is durable and which can be readily produced in commercial scale at a low cost, and its production method are provided. The cell culture substrate comprises a substrate and a layer formed by surface modification, which comprises a polymer containing amino group produced by reacting a polymer represented by the following formula (II): (wherein n is 0 or a positive integer, and m is a positive integer, the n and m representing degree of polymerization) formed by chemical vapor deposition of formyl[2.2]paracyclophane represented by the following formula (I): (wherein k is 0 or 1) with a polymer having at least one amino group (—NH2) capable of forming Schiff base in its monomer. The production method of the cell culture substrate comprises the step of synthesizing such polymer on the substrate.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 12, 2009
    Applicants: KISHIMOTO SANGYO CO., LTD., DAISANKASEI CO., LTD., THE UNIVERSITY OF TOKYO
    Inventors: Shin Ohya, Takashi Inoue, Takatoki Yamamoto, Teruo Fujii, Yasuyuki Sakai, Masaki Nishikawa, Hitomi Sakai, Hirosuke Naruto