Patents by Inventor Hirotaka Ikeda
Hirotaka Ikeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250060641Abstract: A display device includes a first pixel, a second pixel, and a third pixel arranged in a first direction in a display area arranged on a first substrate, a first source wiring, a second wiring, and a third wiring extending in the first direction, and connected to each of the first pixel to the third pixel, and a first gate wiring, a second gate wiring, and a third wiring intersecting the first direction, and connected to each of the first pixel to the third pixel. The first pixel includes a first transistor electrically connected to the first gate wiring and the first source wiring and a liquid crystal element electrically connected to the first transistor, the first pixel to the third pixel are arranged between the first source wiring and the third source wiring, and the second source wiring, and the first source wiring intersects the third source wiring.Type: ApplicationFiled: November 4, 2024Publication date: February 20, 2025Applicant: Japan Display Inc.Inventors: Kentaro KAWAI, Masataka IKEDA, Hirotaka HAYASHI, Yuuji OOMORI, Yoshihide OHUE
-
Patent number: 12229923Abstract: A monitoring camera includes an imaging unit configured to capture an image of an imaging area, and a processor configured to determine a first intensity and a second intensity to be different from each other. The first intensity indicates an intensity of a noise reduction processing executed on an attention portion in the captured image of the imaging area, and the second intensity indicates an intensity of a noise reduction processing executed on a non-attention portion in the captured image. The first intensity is lower than the second intensity. The processor is configured to execute the noise reduction processing on the attention portion based on the determined first intensity, to execute the noise reduction processing on the non-attention portion based on the determined second intensity, and to output an image after the noise reduction processing.Type: GrantFiled: January 20, 2022Date of Patent: February 18, 2025Assignee: I-PRO CO., LTD.Inventors: Hirotaka Nozaki, Jun Ikeda, Yohei Aoki
-
Patent number: 12107129Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: GrantFiled: April 18, 2023Date of Patent: October 1, 2024Assignee: Mitsubishi Chemical CorporationInventors: Satoru Nagao, Yusuke Tsukada, Kazunori Kamada, Shuichi Kubo, Hirotaka Ikeda, Kenji Fujito, Hideo Fujisawa, Yutaka Mikawa, Tae Mochizuki
-
Publication number: 20230392280Abstract: An object of the present invention is to provide a GaN crystal long in light emission lifetime by time-resolved photoluminescence measurement and provide high-quality GaN crystal and GaN substrate that have few specified crystal defects affecting the light emission lifetime. A gallium nitride crystal having a light emission lifetime by time-resolved photoluminescence measurement, of 5 ps or more and 200 ps or less, and satisfying at least one of the following requirement (i) and requirement (ii): (i) an FWHM in a 004 diffraction X-ray rocking curve is 50 arcsec or less at least one position of the crystal; and (ii) a dislocation density is 5×106 cm?2 or less.Type: ApplicationFiled: August 24, 2023Publication date: December 7, 2023Applicants: MITSUBISHI CHEMICAL CORPORATION, THE JAPAN STEEL WORKS, LTD., TOHOKU UNIVERSITYInventors: Yutaka MIKAWA, Hirotaka IKEDA, Quanxi BAO, Kouhei KURIMOTO, Kohei SHIMA, Kazunobu KOJIMA, Toru ISHIGURO, Shigefusa CHICHIBU
-
Publication number: 20230253461Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: ApplicationFiled: April 18, 2023Publication date: August 10, 2023Applicant: Mitsubishi Chemical CorporationInventors: Satoru NAGAO, Yusuke TSUKADA, azunori KAMADA, Shuichi KUBO, Hirotaka IKEDA, Kenji FUJITO, Hideo FUJISAWA, Yutaka MIKAWA, Tae MOCHIZUKI
-
Patent number: 11670687Abstract: A gallium nitride substrate comprising a first main surface and a second main surface opposite thereto, wherein the first main surface is a non-polar or semi-polar plane, a dislocation density measured by a room-temperature cathode luminescence method in the first main surface is 1×104 cm?2 or less, and an averaged dislocation density measured by a room-temperature cathode luminescence method in an optional square region sizing 250 ?m×250 ?m in the first main plan is 1×106 cm?2 or less.Type: GrantFiled: June 19, 2020Date of Patent: June 6, 2023Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Yusuke Tsukada, Shuichi Kubo, Kazunori Kamada, Hideo Fujisawa, Tatsuhiro Ohata, Hirotaka Ikeda, Hajime Matsumoto, Yutaka Mikawa
-
Patent number: 11664428Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: GrantFiled: April 23, 2021Date of Patent: May 30, 2023Assignee: Mitsubishi Chemical CorporationInventors: Satoru Nagao, Yusuke Tsukada, Kazunori Kamada, Shuichi Kubo, Hirotaka Ikeda, Kenji Fujito, Hideo Fujisawa, Yutaka Mikawa, Tae Mochizuki
-
Publication number: 20210273058Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: ApplicationFiled: April 23, 2021Publication date: September 2, 2021Applicant: Mitsubishi Chemical CorporationInventors: Satoru NAGAO, Yusuke TSUKADA, Kazunori KAMADA, Shuichi KUBO, Hirotaka IKEDA, Kenji FUJITO, Hideo FUJISAWA, Yutaka MIKAWA, Tae MOCHIZUKI
-
Patent number: 11038024Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: GrantFiled: June 18, 2019Date of Patent: June 15, 2021Assignee: Mitsubishi Chemical CorporationInventors: Satoru Nagao, Yusuke Tsukada, Kazunori Kamada, Shuichi Kubo, Hirotaka Ikeda, Kenji Fujito, Hideo Fujisawa, Yutaka Mikawa, Tae Mochizuki
-
Patent number: 11031475Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10 ?5 ? or less is observed.Type: GrantFiled: September 18, 2019Date of Patent: June 8, 2021Assignee: Mitsubishi Chemical CorporationInventors: Satoru Nagao, Yusuke Tsukada, Kazunori Kamada, Shuichi Kubo, Hirotaka Ikeda, Kenji Fujito, Hideo Fujisawa, Yutaka Mikawa, Tae Mochizuki
-
Patent number: 10995421Abstract: An object of the present invention is to provide a crystal of a nitride of a Group-13 metal on the Periodic Table which has good crystallinity and has no crystal strain, and to provide a production method for the crystal. The crystal of a nitride of a Group-13 metal on the Periodic Table of the present invention, comprises oxygen atom and hydrogen atom in the crystal and has a ratio of a hydrogen concentration to an oxygen concentration therein of from 0.5 to 4.5.Type: GrantFiled: March 8, 2019Date of Patent: May 4, 2021Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Yutaka Mikawa, Hideo Namita, Hirotaka Ikeda, Kazunori Kamada, Hideo Fujisawa, Atsuhiko Kojima
-
Publication number: 20200321438Abstract: A gallium nitride substrate comprising a first main surface and a second main surface opposite thereto, wherein the first main surface is a non-polar or semi-polar plane, a dislocation density measured by a room-temperature cathode luminescence method in the first main surface is 1×104 cm?2 or less, and an averaged dislocation density measured by a room-temperature cathode luminescence method in an optional square region sizing 250 ?m×250 ?m in the first main plan is 1×106 cm?2 or less.Type: ApplicationFiled: June 19, 2020Publication date: October 8, 2020Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Yusuke Tsukada, Shuichi Kubo, Kazunori Kamada, Hideo Fujisawa, Tatsuhiro Ohata, Hirotaka Ikeda, Hajime Matsumoto, Yutaka Mikawa
-
Patent number: 10734485Abstract: The main purpose of the present invention is to provide: a nonpolar or semipolar GaN substrate, in which a nitride semiconductor crystal having a low stacking fault density can be epitaxially grown on the main surface of the substrate, and a technique required for the production of the substrate. This invention provides: a method for manufacturing an M-plane GaN substrate comprising; forming a mask pattern having a line-shaped opening parallel to an a-axis of a C-plane GaN substrate on an N-polar plane of the C-plane GaN substrate, growing a plane-shape GaN crystal of which thickness direction is an m-axis direction from the opening of the mask pattern by an ammonotharmal method, and cutting out the M-plane GaN substrate from the plane-shape GaN crystal.Type: GrantFiled: March 29, 2017Date of Patent: August 4, 2020Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Yusuke Tsukada, Shuichi Kubo, Kazunori Kamada, Hideo Fujisawa, Tatsuhiro Ohata, Hirotaka Ikeda, Hajime Matsumoto, Yutaka Mikawa
-
Patent number: 10570530Abstract: A periodic table Group 13 metal nitride crystals grown with a non-polar or semi-polar principal surface have numerous stacking faults. The purpose of the present invention is to provide a period table Group 13 metal nitride crystal wherein the occurrence of stacking faults of this kind are suppressed. The present invention achieves the foregoing by a periodic table Group 13 metal nitride crystal being characterized in that, in a Qx direction intensity profile that includes a maximum intensity and is derived from an isointensity contour plot obtained by x-ray reciprocal lattice mapping of (100) plane of the periodic table Group 13 metal nitride crystal, a Qx width at 1/300th of peak intensity is 6×10?4 rlu or less.Type: GrantFiled: May 11, 2018Date of Patent: February 25, 2020Assignee: Mitsubishi Chemical CorporationInventors: Yuuki Enatsu, Satoru Nagao, Shuichi Kubo, Hirotaka Ikeda, Kenji Fujito
-
Publication number: 20200013860Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: ApplicationFiled: September 18, 2019Publication date: January 9, 2020Applicant: Mitsubishi Chemical CorporationInventors: Satoru NAGAO, Yusuke Tsukada, Kazunori Kamada, Shuichi Kubo, Hirotaka Ikeda, Kenji Fujito, Hideo Fujisawa, Yutaka Mikawa, Tae Mochizuki
-
Patent number: 10475887Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: GrantFiled: February 5, 2016Date of Patent: November 12, 2019Assignee: Mitsubishi Chemical CorporationInventors: Satoru Nagao, Yusuke Tsukada, Kazunori Kamada, Shuichi Kubo, Hirotaka Ikeda, Kenji Fujito, Hideo Fujisawa, Yutaka Mikawa, Tae Mochizuki
-
Publication number: 20190312111Abstract: An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10?5 ? or less is observed.Type: ApplicationFiled: June 18, 2019Publication date: October 10, 2019Applicant: Mitsubishi Chemical CorporationInventors: Satoru NAGAO, Yusuke TSUKADA, Kazunori KAMADA, Shuichi KUBO, Hirotaka IKEDA, Kenji FUJITO, Hideo FUJISAWA, Yutaka MIKAWA, Tae MOCHIZUKI
-
Publication number: 20190203379Abstract: An object of the present invention is to provide a crystal of a nitride of a Group-13 metal on the Periodic Table which has good crystallinity and has no crystal strain, and to provide a production method for the crystal. The crystal of a nitride of a Group-13 metal on the Periodic Table of the present invention, comprises oxygen atom and hydrogen atom in the crystal and has a ratio of a hydrogen concentration to an oxygen concentration therein of from 0.5 to 4.5.Type: ApplicationFiled: March 8, 2019Publication date: July 4, 2019Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Yutaka Mikawa, Hideo Namita, Hirotaka Ikeda, Kazunori Kamada, Hideo Fujisawa, Atsuhiko Kojima
-
Patent number: 10309038Abstract: An object of the present invention is to provide a crystal of a nitride of a Group-13 metal on the Periodic Table which has good crystallinity and has no crystal strain, and to provide a production method for the crystal. The crystal of a nitride of a Group-13 metal on the Periodic Table of the present invention, comprises oxygen atom and hydrogen atom in the crystal and has a ratio of a hydrogen concentration to an oxygen concentration therein of from 0.5 to 4.5.Type: GrantFiled: December 14, 2017Date of Patent: June 4, 2019Assignee: MITSUBISHI CHEMICAL CORPORATIONInventors: Yutaka Mikawa, Hideo Namita, Hirotaka Ikeda, Kazunori Kamada, Hideo Fujisawa, Atsuhiko Kojima
-
Publication number: 20180258552Abstract: A periodic table Group 13 metal nitride crystals grown with a non-polar or semi-polar principal surface have numerous stacking faults. The purpose of the present invention is to provide a period table Group 13 metal nitride crystal wherein the occurrence of stacking faults of this kind are suppressed. The present invention achieves the foregoing by a periodic table Group 13 metal nitride crystal being characterized in that, in a Qx direction intensity profile that includes a maximum intensity and is derived from an isointensity contour plot obtained by x-ray reciprocal lattice mapping of (100) plane of the periodic table Group 13 metal nitride crystal, a Qx width at 1/300th of peak intensity is 6×10?4 rlu or less.Type: ApplicationFiled: May 11, 2018Publication date: September 13, 2018Applicant: Mitsubishi Chemical CorporationInventors: Yuuki ENATSU, Satoru NAGAO, Shuichi KUBO, Hirotaka IKEDA, Kenji FUJITO