Patents by Inventor Hirotaka Takihara

Hirotaka Takihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230253963
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventors: Daiki YANAGISHIMA, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 11721696
    Abstract: A semiconductor integrated circuit includes first to fourth transistor arrangement regions. A portion of the third transistor arrangement region is located on a second side in a first direction of the second transistor arrangement region. A portion of the first transistor arrangement region connected to the second transistor arrangement region is sandwiched in the first direction by the second transistor arrangement region and the portion of the third transistor arrangement region. The portion of the first transistor arrangement region is located on a first side in the first direction of the fourth transistor arrangement region. The portion of the third transistor arrangement region connected to the fourth transistor arrangement region is sandwiched in the first direction by the fourth transistor arrangement region and the portion of the first transistor arrangement region.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 8, 2023
    Assignee: Rohm Co., Ltd.
    Inventor: Hirotaka Takihara
  • Patent number: 11658659
    Abstract: A signal transmission device includes a signal transmission chip, and a first lead frame supporting the signal transmission chip. A first inductor spiral ring is on a surface of the signal transmission chip, a second inductor spiral ring is inside the signal transmission chip, a first bonding pad is electrically coupled between the first and second inductor spiral rings, a guard ring covers the first and second inductor spiral rings in a plan view, and bonding pads are outside of the guard ring. A direction of rotation between the first and second inductor spiral rings are different from each other. The signal transmission device further includes a semiconductor chip and a second lead frame supporting the semiconductor chip, wherein the signal transmission chip and the semiconductor chip face each other.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: May 23, 2023
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20210358909
    Abstract: A semiconductor integrated circuit includes first to fourth transistor arrangement regions. A portion of the third transistor arrangement region is located on a second side in a first direction of the second transistor arrangement region. A portion of the first transistor arrangement region connected to the second transistor arrangement region is sandwiched in the first direction by the second transistor arrangement region and the portion of the third transistor arrangement region. The portion of the first transistor arrangement region is located on a first side in the first direction of the fourth transistor arrangement region. The portion of the third transistor arrangement region connected to the fourth transistor arrangement region is sandwiched in the first direction by the fourth transistor arrangement region and the portion of the first transistor arrangement region.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 18, 2021
    Inventor: Hirotaka Takihara
  • Publication number: 20210351772
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sal) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: July 23, 2021
    Publication date: November 11, 2021
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 11115020
    Abstract: A signal transmission device includes a first lead frame supporting a signal transmission chip that includes first and second inductor spiral rings, a first bonding pad electrically coupled between the first and second inductor spiral rings, and a guard ring provided to roundly cover the first and second inductor spiral rings in a plan view. Bonding pads are provided outside of the guard ring. A direction of rotation between the first and second inductor spiral rings are different from each other so that the first and second inductor spiral rings are disposed substantially symmetrically about the first bonding pad. A second lead frame supports a semiconductor chip, with the signal transmission chip and the semiconductor chip facing each other.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: September 7, 2021
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20200313671
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: July 11, 2019
    Publication date: October 1, 2020
    Applicant: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20190334522
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 10382035
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 13, 2019
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20170194959
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 9632135
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 25, 2017
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 9523613
    Abstract: A temperature detecting apparatus includes a temperature detecting circuit configured to output a first pulse signal according to a temperature detected by a temperature sensor, and an insulating transformer configured to transmit the first pulse signal to an integrated circuit which is operated by an operation voltage different from that of the temperature detecting circuit. The insulating transformer is installed between the temperature detecting circuit and the integrated circuit. The temperature detecting circuit and the insulating transformer are mounted on a common substrate.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: December 20, 2016
    Assignee: Rohm Co., Ltd.
    Inventors: Hirotaka Takihara, Shintaro Takahashi
  • Patent number: 9088444
    Abstract: A signal-transferring device having a first circuit and a second circuit that operate on different ground references, and a third circuit for transferring signals while providing insulation between the first circuit and the second circuit. The second circuit switches a logic level of an output signal in accordance with the logic level of an input signal notified by the first circuit, and notifies the first circuit about the logic level of the output signal. The first circuit notifies the second circuit about the logic level of the input signal not only when the logic level of the input signal has been switched, but also when the logic level of the output signal notified by the second circuit does not match the logic level of the input signal.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: July 21, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Akio Sasabe, Hirotaka Takihara, Makoto Ikenaga, Toshiyuki Ishikawa
  • Publication number: 20150137843
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Application
    Filed: December 19, 2014
    Publication date: May 21, 2015
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20150117492
    Abstract: A temperature detecting apparatus includes a temperature detecting circuit configured to output a first pulse signal according to a temperature detected by a temperature sensor, and an insulating transformer configured to transmit the first pulse signal to an integrated circuit which is operated by an operation voltage different from that of the temperature detecting circuit. The insulating transformer is installed between the temperature detecting circuit and the integrated circuit. The temperature detecting circuit and the insulating transformer are mounted on a common substrate.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 30, 2015
    Inventors: Hirotaka Takihara, Shintaro Takahashi
  • Patent number: 8947117
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 3, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20140361810
    Abstract: A signal-transferring device having a first circuit and a second circuit that operate on different ground references, and a third circuit for transferring signals while providing insulation between the first circuit and the second circuit. The second circuit switches a logic level of an output signal in accordance with the logic level of an input signal notified by the first circuit, and notifies the first circuit about the logic level of the output signal. The first circuit notifies the second circuit about the logic level of the input signal not only when the logic level of the input signal has been switched, but also when the logic level of the output signal notified by the second circuit does not match the logic level of the input signal.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 11, 2014
    Inventors: Akio SASABE, Hirotaka TAKIHARA, Makoto IKENAGA, Toshiyuki ISHIKAWA
  • Publication number: 20120250385
    Abstract: A temperature detecting apparatus includes a temperature detecting circuit configured to output a first pulse signal according to a temperature detected by a temperature sensor, and an insulating transformer configured to transmit the first pulse signal to an integrated circuit which is operated by an operation voltage different from that of the temperature detecting circuit. The insulating transformer is installed between the temperature detecting circuit and the integrated circuit. The temperature detecting circuit and the insulating transformer are mounted on a common substrate.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicant: Rohm Co., Ltd.
    Inventors: HIROTAKA TAKIHARA, SHINTARO TAKAHASHI
  • Publication number: 20120212251
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Application
    Filed: October 13, 2010
    Publication date: August 23, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20080253047
    Abstract: In a semiconductor device, a problem of heat generation and power loss is alleviated, and the semiconductor device is protected against the failure due to the overcurrent. The semiconductor device includes an IC chip having a large-current output. In the IC chip a measuring terminal is electrically connected with a first pad via a gold wire. A potential difference generated by the impedance of the gold wire is compared with a predetermined value. When the potential difference exceeds the predetermined threshold level, the semiconductor device operates to turn off a PMOS-type transistor.
    Type: Application
    Filed: May 23, 2005
    Publication date: October 16, 2008
    Inventors: Hirotaka Takihara, Youichi Kajiwara, Masanori Tsuchihashi