Patents by Inventor Hirotaka Yagi

Hirotaka Yagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250019053
    Abstract: A marine propulsion system includes a propulsion device, an up-and-down movement sensor, and a controller configured or programmed to control driving of the propulsion device and perform a wave control including an attitude control to reduce an up-and-down attitude change of a hull by temporarily reducing a vessel speed based on a measurement result of the up-and-down movement sensor each time a marine vessel rides over a wave. The controller is configured or programmed to, in the wave control, perform the attitude control when it is determined that a wave condition is a head wave, and not perform the attitude control when it is determined that the wave condition is a following wave.
    Type: Application
    Filed: July 3, 2024
    Publication date: January 16, 2025
    Inventors: Akihiro TAGATA, Yoshinori YAGI, Hirotaka TAMOTO
  • Patent number: 9557339
    Abstract: The present invention is to provide a nucleic acid molecule having a binding affinity to a rodent-derived IgG antibody, which can be prepared easier than an antibody and has a binding affinity equivalent or superior to that of an antibody, a binder using the nucleic acid molecule, a detection reagent, and a detection kit. The nucleic acid molecule of the present invention has a binding affinity to a rodent-derived IgG antibody and has a dissociation constant of 1 ?M or less. The binder for a rodent-derived IgG antibody of the present invention includes the nucleic acid molecule of the present invention. The detection reagent for detecting a rodent-derived IgG antibody of the present invention includes the binder for a rodent-derived IgG antibody of the present invention. The detection kit for detecting a rodent-derived IgG antibody of the present invention includes the detection reagent for detecting a rodent-derived IgG antibody of the present invention.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: January 31, 2017
    Assignee: NEC Solution Innovators, Ltd.
    Inventors: Hiromi Takenaka, Yoshihito Yoshida, Katsunori Horii, Makio Furuichi, Hirotaka Yagi, Jou Akitomi, Mineko Yamaguchi, Shintarou Katou, Kensaku Nishikata, Iwao Waga
  • Publication number: 20140370618
    Abstract: The present invention is to provide a nucleic acid molecule having a binding affinity to a rodent-derived IgG antibody, which can be prepared easier than an antibody and has a binding affinity equivalent or superior to that of an antibody, a binder using the nucleic acid molecule, a detection reagent, and a detection kit. The nucleic acid molecule of the present invention has a binding affinity to a rodent-derived IgG antibody and has a dissociation constant of 1 ?M or less. The binder for a rodent-derived IgG antibody of the present invention includes the nucleic acid molecule of the present invention. The detection reagent for detecting a rodent-derived IgG antibody of the present invention includes the binder for a rodent-derived IgG antibody of the present invention. The detection kit for detecting a rodent-derived IgG antibody of the present invention includes the detection reagent for detecting a rodent-derived IgG antibody of the present invention.
    Type: Application
    Filed: July 21, 2014
    Publication date: December 18, 2014
    Applicant: NEC SOFT, LTD.
    Inventors: Hiromi TAKENAKA, Yoshihito YOSHIDA, Katsunori HORII, Makio FURUICHI, Hirotaka YAGI, Jou AKITOMI, Mineko YAMAGUCHI, Shintarou KATOU, Kensaku NISHIKATA, Iwao WAGA
  • Patent number: 8852954
    Abstract: The invention provides a nucleic acid molecule having a binding affinity to a rodent-derived IgG antibody, which can be prepared easier than an antibody and has a binding affinity equivalent or superior to that of an antibody, a binder using the nucleic acid molecule, a detection reagent, and a detection kit. The nucleic acid molecule of the invention has a binding affinity to a rodent-derived IgG antibody and has a dissociation constant of 1 ?M or less. The binder for a rodent-derived IgG antibody of the present invention includes the nucleic acid molecule of the present invention. The detection reagent for detecting a rodent-derived IgG antibody of the invention includes the binder for a rodent-derived IgG antibody of the invention. The detection kit for detecting a rodent-derived IgG antibody of the invention includes the detection reagent for detecting a rodent-derived IgG antibody of the invention.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: October 7, 2014
    Assignee: NEC Solution Innovators, Ltd.
    Inventors: Hiromi Takenaka, Yoshihito Yoshida, Katsunori Horii, Makio Furuichi, Hirotaka Yagi, Jou Akitomi, Mineko Yamaguchi, Shintarou Katou, Kensaku Nishikata, Iwao Waga
  • Publication number: 20130022967
    Abstract: The invention provides a nucleic acid molecule having a binding affinity to a rodent-derived IgG antibody, which can be prepared easier than an antibody and has a binding affinity equivalent or superior to that of an antibody, a binder using the nucleic acid molecule, a detection reagent, and a detection kit. The nucleic acid molecule of the invention has a binding affinity to a rodent-derived IgG antibody and has a dissociation constant of 1 ?M or less. The binder for a rodent-derived IgG antibody of the present invention includes the nucleic acid molecule of the present invention. The detection reagent for detecting a rodent-derived IgG antibody of the invention includes the binder for a rodent-derived IgG antibody of the invention. The detection kit for detecting a rodent-derived IgG antibody of the invention includes the detection reagent for detecting a rodent-derived IgG antibody of the invention.
    Type: Application
    Filed: August 21, 2009
    Publication date: January 24, 2013
    Applicant: NEC SOFT, LTD.
    Inventors: Hiromi Takenaka, Yoshihito Yoshida, Katsunori Horii, Makio Furuichi, Hirotaka Yagi, Jou Akitomi, Mineko Yamaguchi, Shintarou Katou, Kensaku Nishikata, Iwao Waga