Patents by Inventor Hiroto IGAWA

Hiroto IGAWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908682
    Abstract: According to one aspect of the technique, there is provided a method of manufacturing a semiconductor device, including: (a) forming a first oxide layer by modifying a surface of a substrate at a first temperature with a plasma of a first oxygen-containing gas; and (b) forming a second oxide layer thicker than the first oxide layer by heating the substrate to a second temperature higher than the first temperature and modifying the surface of the substrate, on which the first oxide layer is formed, with a plasma of a second oxygen-containing gas.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 20, 2024
    Assignee: Kokusai Electric Corporation
    Inventors: Hiroto Igawa, Masanori Nakayama, Katsunori Funaki, Tatsushi Ueda, Yasutoshi Tsubota, Eiko Takami, Yuichiro Takeshima, Yuki Yamakado
  • Publication number: 20230307295
    Abstract: There is provided a technique that includes: preparing the substrate including a silicon-containing film and a metal film composed of a metal element, which includes at least one selected from the group of tungsten, titanium, ruthenium, and molybdenum and, which are formed on a surface of the substrate; and simultaneously performing modifying the metal film and modifying the silicon-containing film by supplying reactive species, which are generated by plasma-exciting a processing gas containing hydrogen and oxygen, to the substrate.
    Type: Application
    Filed: April 25, 2023
    Publication date: September 28, 2023
    Applicant: Kokusai Electric Corporation
    Inventors: Masanori NAKAYAMA, Katsunori Funaki, Tatsushi Ueda, Yasutoshi Tsubota, Yuichiro Takeshima, Hiroto Igawa, Yuki Yamakado
  • Publication number: 20230201889
    Abstract: There is provided a technique that includes modifying a deposited film, which is formed on an inner surface of a reaction container, into a film including an oxide layer and a nitride layer by performing a cycle a predetermined number of times, the cycle including: (a) oxidizing the deposited film by supplying an oxygen-containing gas into the reaction container and plasma-exciting the oxygen-containing gas; and (b) nitriding the deposited film by supplying a nitrogen-containing gas into the reaction container and plasma-exciting the nitrogen-containing gas.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 29, 2023
    Applicant: Kokusai Electric Corporation
    Inventors: Yuki YAMAKADO, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Yuichiro TAKESHIMA, Keita ICHIMURA, Hiroto IGAWA, Hiroki KISHIMOTO
  • Patent number: 11664275
    Abstract: There is provided a technique that includes: loading a substrate having a metal film composed of a single metal element formed on a surface of the substrate into a process chamber; generating reactive species by plasma-exciting a processing gas containing hydrogen and oxygen; and modifying the metal film by supplying the reactive species to the substrate, wherein in the act of modifying the metal film, the metal film is modified such that a crystal grain size of the metal element constituting the metal film is larger than that before performing the act of modifying the metal film.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: May 30, 2023
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masanori Nakayama, Katsunori Funaki, Tatsushi Ueda, Yasutoshi Tsubota, Yuichiro Takeshima, Hiroto Igawa, Yuki Yamakado
  • Publication number: 20230097621
    Abstract: A method of processing a substrate, includes: (a) modifying a surface of the substrate into a first oxide layer by supplying, to the substrate, a reactive species generated by plasma-exciting a first processing gas in which oxygen and hydrogen are contained and a ratio of hydrogen in the oxygen and hydrogen of the first processing gas is a first ratio; and (b) modifying the first oxide layer into a second oxide layer by supplying, to the substrate, a reactive species generated by plasma-exciting a second processing gas in which oxygen is contained and hydrogen is optionally contained and a ratio of hydrogen in the oxygen and hydrogen of the second processing gas is a second ratio smaller than the first ratio.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 30, 2023
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Hiroto IGAWA, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Yuichiro TAKESHIMA, Keita ICHIMURA, Yuki YAMAKADO, Hiroki KISHIMOTO
  • Publication number: 20220328289
    Abstract: There is provided a technique that includes a process container including a cylindrical portion, a process chamber being formed in the process container and a substrate being arranged in the process chamber; a gas supplier configured to supply a processing gas to the process chamber; an electrode installed in a spiral shape to surround the process container from outside of the cylindrical portion of the process container and supplied with high-frequency power to plasma-excite the processing gas; and a mover configured to be capable of moving the electrode with respect to the process container in a radial direction of the cylindrical portion.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Applicant: Kokusai Electric Corporation
    Inventors: Yasutoshi TSUBOTA, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yuichiro TAKESHIMA, Keita ICHIMURA, Hiroto IGAWA, Yuki YAMAKADO, Hiroki KISHIMOTO
  • Publication number: 20220301863
    Abstract: A method of manufacturing a semiconductor device includes: (a) generating a reactive species by plasma-exciting a process gas containing oxygen and hydrogen; and (b) supplying the reactive species to a substrate and oxidizing surfaces of a silicon film and a silicon nitride film formed to be exposed respectively on the substrate, wherein a ratio of oxygen and hydrogen contained in the process gas is adjusted such that a ratio of a thickness of a second oxide layer formed by oxidizing the surface of the silicon nitride film to a thickness of a first oxide layer formed by oxidizing the surface of the silicon film in (b) becomes a predetermined thickness ratio.
    Type: Application
    Filed: February 17, 2022
    Publication date: September 22, 2022
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Tatsushi UEDA, Masanori NAKAYAMA, Katsunori FUNAKI, Yasutoshi TSUBOTA, Hiroto IGAWA, Yuki YAMAKADO, Hiroki KISHIMOTO, Yuichiro TAKESHIMA, Keita ICHIMURA
  • Publication number: 20220139675
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device, including: (a) loading a substrate with a film formed on a surface thereof into a process vessel; (b) generating a reactive species containing oxygen and a reactive species of a rare gas by converting a mixed gas containing the rare gas and an oxygen-containing gas into a plasma state; and (c) oxidizing the film by supplying the reactive species containing oxygen to the substrate together with the reactive species of the rare gas. In (b), a partial pressure ratio PN/PT, which is a ratio of a partial pressure PN of the rare gas in the process vessel to a total pressure PT of the mixed gas in the process vessel, is set to a value of 0.4 or less.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Inventors: Yuki YAMAKADO, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Yuichiro TAKESHIMA, Hiroto IGAWA, Eiko TAKAMI, Keita ICHIMURA
  • Publication number: 20220084816
    Abstract: According to one aspect of the technique, there is provided a method of manufacturing a semiconductor device, including: modifying a surface of a substrate into an impurity-containing layer by performing: (a) supplying an impurity-containing gas containing an impurity and a dilution gas into a process chamber in which the substrate is accommodated; (b) plasma-exciting the impurity-containing gas and the dilution gas; and (c) supplying an active species containing the impurity generated by plasma-exciting the impurity-containing gas and the dilution gas to the substrate, wherein a flow rate ratio of the impurity-containing gas to the dilution gas is controlled in (a) such that a partial pressure of the impurity-containing gas in the process chamber is set to a predetermined partial pressure less than a partial pressure at which the impurity-containing gas forms deposits containing a polymer in the process chamber.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 17, 2022
    Inventors: Keita ICHIMURA, Masanori NAKAYAMA, Hiroto IGAWA, Yuichiro TAKESHIMA, Katsunori FUNAKI, Hiroki KISHIMOTO, Yuki YAMAKADO, Yasutoshi TSUBOTA, Tatsushi UEDA
  • Publication number: 20220005673
    Abstract: A method of manufacturing a semiconductor device includes accommodating a substrate in a process chamber; supplying a first gas containing oxygen into the process chamber; generating plasma in the process chamber by exciting the first gas; supplying a second gas containing hydrogen into the process chamber and adjusting a hydrogen concentration distribution in the process chamber according to a density distribution of the plasma in the process chamber; and processing the substrate with oxidizing species generated by the plasma.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yasutoshi TSUBOTA, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Eiko TAKAMI, Yuichiro TAKESHIMA, Hiroto IGAWA, Yuki YAMAKADO, Keita ICHIMURA
  • Patent number: 11189483
    Abstract: According to one aspect of the technique of the present disclosure, there is provided a method of manufacturing a semiconductor device including: (a) providing a semiconductor processing apparatus including a substrate process chamber, a coil and a substrate support; (b) placing a target substrate with a concave structure of a silicon film on a substrate support, wherein a deteriorated layer is formed on an inner surface of the concave structure by deterioration of a surface layer of the silicon film due to an etching process; (c) supplying an oxygen-containing gas into the substrate process chamber; (d) applying a high frequency power to the coil to generate plasma of the oxygen-containing gas; and (e) oxidizing, by the plasma, a surface of the silicon film exposed in the concave structure wherein the deteriorated layer is formed on the surface.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: November 30, 2021
    Assignee: Kokusai Electric Corporation
    Inventors: Yuichiro Takeshima, Masanori Nakayama, Katsunori Funaki, Yasutoshi Tsubota, Hiroto Igawa
  • Patent number: 11152476
    Abstract: Described herein is a technique capable of improving electrical characteristics of a polysilicon film while suppressing damage to an underlying silicon oxide film. According to the technique described herein, there is provided a there is provided a method of manufacturing a semiconductor device, including: (a) preparing a substrate including a silicon oxide film and a polysilicon film formed on the silicon oxide film, wherein the polysilicon film includes a contact surface contacting the silicon oxide film and an exposed surface facing the contact surface; and (b) supplying a reactive species generated by plasma excitation of a gas containing hydrogen and oxygen to the exposed surface of the polysilicon film.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: October 19, 2021
    Assignee: Kokusai Electric Corporation
    Inventors: Masanori Nakayama, Yuichiro Takeshima, Hiroto Igawa, Katsunori Funaki
  • Patent number: 11145491
    Abstract: Described herein is a technique capable of suppressing variations or deterioration in a processing rate between a plurality of substrates due to temperature. According to one aspect of the technique of the present disclosure, there is provided a substrate processing apparatus including: a process vessel constituting at least a part of a process chamber where a substrate is processed; a plasma generator comprising a coil provided to be wound around an outer periphery of the process vessel and a high frequency power supply configured to supply high frequency power to the coil; a substrate support provided in the process chamber and below a lower end of the coil; a heater provided in the substrate support; and a temperature sensor configured to measure a temperature of a portion of the process vessel located above an upper end of the coil.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: October 12, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masaki Murobayashi, Koichiro Harada, Hiroto Igawa, Teruo Yoshino, Masanori Nakayama
  • Patent number: 11081362
    Abstract: There is provided a technique that includes: (a) loading a substrate including a base and a first film containing silicon and formed on the base into a process container; (b) converting a modifying gas containing helium into plasma to generate reactive species of helium; and (c) supplying the modifying gas containing the reactive species of helium to a surface of the substrate to respectively modify the first film and an interface layer of the base constituting an interface with the first film.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: August 3, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yuki Yamakado, Masanori Nakayama, Katsunori Funaki, Tatsushi Ueda, Yasutoshi Tsubota, Eiko Takami, Yuichiro Takeshima, Hiroto Igawa
  • Publication number: 20210183645
    Abstract: According to one aspect of the technique, there is provided a method of manufacturing a semiconductor device, including: (a) forming a first oxide layer by modifying a surface of a substrate at a first temperature with a plasma of a first oxygen-containing gas; and (b) forming a second oxide layer thicker than the first oxide layer by heating the substrate to a second temperature higher than the first temperature and modifying the surface of the substrate, on which the first oxide layer is formed, with a plasma of a second oxygen-containing gas.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Hiroto IGAWA, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Eiko TAKAMI, Yuichiro TAKESHIMA, Yuki YAMAKADO
  • Patent number: 10796900
    Abstract: Described herein is a technique capable of improving electrical characteristics of a semiconductor device. According to the technique, there is provided a method of manufacturing a semiconductor device including: (a) generating oxygen and hydrogen active species; and (b) forming an oxide layer by supplying the oxygen and hydrogen active species to a substrate with a concave structure to subject a film on an inner surface of the concave structure to oxidation, wherein the oxide layer is formed in (b) such that a thickness of the oxide layer is greater on the inner surface than at an upper end portion of the concave structure by setting a ratio of a flow rate of the hydrogen active species to a total flow rate to a predetermined ratio greater than a first ratio at which a rate of forming the oxide layer is maximized at the upper end portion of the concave structure.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: October 6, 2020
    Assignee: Kokusai Electric Corporation
    Inventors: Yuichiro Takeshima, Masanori Nakayama, Katsunori Funaki, Yasutoshi Tsubota, Hiroto Igawa
  • Publication number: 20200211858
    Abstract: There is provided a technique that includes: loading a substrate having a metal film composed of a single metal element formed on a surface of the substrate into a process chamber; generating reactive species by plasma-exciting a processing gas containing hydrogen and oxygen; and modifying the metal film by supplying the reactive species to the substrate, wherein in the act of modifying the metal film, the metal film is modified such that a crystal grain size of the metal element constituting the metal film is larger than that before performing the act of modifying the metal film.
    Type: Application
    Filed: March 12, 2020
    Publication date: July 2, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Yuichiro TAKESHIMA, Hiroto IGAWA, Yuki YAMAKADO
  • Publication number: 20200168434
    Abstract: Described herein is a technique capable of suppressing variations or deterioration in a processing rate between a plurality of substrates due to temperature. According to one aspect of the technique of the present disclosure, there is provided a substrate processing apparatus including: a process vessel constituting at least a part of a process chamber where a substrate is processed; a plasma generator comprising a coil provided to be wound around an outer periphery of the process vessel and a high frequency power supply configured to supply high frequency power to the coil; a substrate support provided in the process chamber and below a lower end of the coil; a heater provided in the substrate support; and a temperature sensor configured to measure a temperature of a portion of the process vessel located above an upper end of the coil.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masaki MUROBAYASHI, Koichiro HARADA, Hiroto IGAWA, Teruo YOSHINO, Masanori NAKAYAMA
  • Publication number: 20200098587
    Abstract: There is provided a technique that includes: (a) loading a substrate including a base and a first film containing silicon and formed on the base into a process container; (b) converting a modifying gas containing helium into plasma to generate reactive species of helium; and (c) supplying the modifying gas containing the reactive species of helium to a surface of the substrate to respectively modify the first film and an interface layer of the base constituting an interface with the first film.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 26, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yuki YAMAKADO, Masanori NAKAYAMA, Katsunori FUNAKI, Tatsushi UEDA, Yasutoshi TSUBOTA, Eiko TAKAMI, Yuichiro TAKESHIMA, Hiroto IGAWA
  • Publication number: 20190355575
    Abstract: Described herein is a technique capable of improving electrical characteristics of a semiconductor device. According to the technique, there is provided a method of manufacturing a semiconductor device including: (a) generating oxygen and hydrogen active species; and (b) forming an oxide layer by supplying the oxygen and hydrogen active species to a substrate with a concave structure to subject a film on an inner surface of the concave structure to oxidation, wherein the oxide layer is formed in (b) such that a thickness of the oxide layer is greater on the inner surface than at an upper end portion of the concave structure by setting a ratio of a flow rate of the hydrogen active species to a total flow rate to a predetermined ratio greater than a first ratio at which a rate of forming the oxide layer is maximized at the upper end portion of the concave structure.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yuichiro TAKESHIMA, Masanori NAKAYAMA, Katsunori FUNAKI, Yasutoshi TSUBOTA, Hiroto IGAWA