Patents by Inventor Hiroyasu Kikuchi

Hiroyasu Kikuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10513798
    Abstract: A method for determining a defect region of a silicon wafer which is sliced off from a silicon single crystal manufactured by a CZ method, the method including: (1) mirror-surface processing the silicon wafer in such a manner that a haze level of a surface thereof in haze measurement performed by a particle counter which uses a laser having a wavelength of 266 nm becomes 0.06 ppm or less; (2) measuring the number of defects and/or a defect density distribution on the mirror-surface-processed surface of the silicon wafer by using a particle counter capable of measuring defects having a size of 15 nm or less; and (3) determining the defect region of the silicon wafer from the measured number of the defects and/or defect density distribution.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: December 24, 2019
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Kazuya Tomii, Hiroyasu Kikuchi
  • Publication number: 20180312994
    Abstract: A method for determining a defect region of a silicon wafer which is sliced off from a silicon single crystal manufactured by a CZ method, the method including: (1) mirror-surface processing the silicon wafer in such a manner that a haze level of a surface thereof in haze measurement performed by a particle counter which uses a laser having a wavelength of 266 nm becomes 0.06 ppm or less; (2) measuring the number of defects and/or a defect density distribution on the mirror-surface-processed surface of the silicon wafer by using a particle counter capable of measuring defects having a size of 15 nm or less; and (3) determining the defect region of the silicon wafer from the measured number of the defects and/or defect density distribution.
    Type: Application
    Filed: October 24, 2016
    Publication date: November 1, 2018
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Kazuya TOMII, Hiroyasu KIKUCHI
  • Patent number: 8187954
    Abstract: The present invention provides a method for manufacturing a silicon single crystal wafer, in which a silicon single crystal wafer that is fabricated based on a Czochralski method and has an entire plane in a radial direction formed of an N region is subjected to a rapid thermal annealing in an oxidizing atmosphere, an oxide film formed in the rapid thermal annealing in the oxidizing atmosphere is removed, and then a rapid thermal annealing is carried out in a nitriding atmosphere, an Ar atmosphere, or a mixed atmosphere of these atmospheres. As a result, there can be provided the manufacturing method that can inexpensively manufacture a silicon single crystal wafer both in which a DZ layer is formed in a wafer surface layer to provide excellent device characteristics and in which an oxide precipitate functioning as a gettering site can be sufficiently formed in a bulk region.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: May 29, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Yoshinori Hayamizu, Hiroyasu Kikuchi
  • Publication number: 20120001301
    Abstract: An annealed wafer obtained by performing rapid thermal annealing on a silicon single crystal wafer sliced from a silicon single crystal ingot in which an entire plane is an OSF region, an N region outside an OSF region, or a mixed region thereof, the silicon single crystal ingot being grown by the Czochralski method, in which RIE defects do not exist in a region having at least a depth of 1 ?m from a surface, a good chip yield of a TDDB characteristic is 80% or more, and a depth of a region where an oxygen concentration is decreased due to outward diffusion is within 3 ?m from the surface, and a method for producing an annealed wafer.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 5, 2012
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Koji Ebara, Yoshinori Hayamizu, Hiroyasu Kikuchi
  • Publication number: 20100105191
    Abstract: The present invention provides a method for manufacturing a silicon single crystal wafer, in which a silicon single crystal wafer that is fabricated based on a Czochralski method and has an entire plane in a radial direction formed of an N region is subjected to a rapid thermal annealing in an oxidizing atmosphere, an oxide film formed in the rapid thermal annealing in the oxidizing atmosphere is removed, and then a rapid thermal annealing is carried out in a nitriding atmosphere, an Ar atmosphere, or a mixed atmosphere of these atmospheres. As a result, there can be provided the manufacturing method that can inexpensively manufacture a silicon single crystal wafer both in which a DZ layer is formed in a wafer surface layer to provide excellent device characteristics and in which an oxide precipitate functioning as a gettering site can be sufficiently formed in a bulk region.
    Type: Application
    Filed: January 24, 2008
    Publication date: April 29, 2010
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Yoshinori Hayamizu, Hiroyasu Kikuchi
  • Publication number: 20060065329
    Abstract: The present invention relates to a high strength steel sheet consisting essentially of 0.04 to 0.1% C, 0.5% or less Si, 0.5 to 2% Mn, 0.05% or less P, 0.005% or less O, 0.005% or less S, by weight, having 10 ?m or less of average ferritic grain size, and 20 mm/mm2 or less of generation frequency A, which generation frequency A is defined as the total length of a banded secondary phase structure observed per 1 mm2 of steel sheet cross section along the rolling direction thereof. The steel sheet is manufactured by, for example, a method comprising the steps of: hot-rolling a continuously cast slab having the composition described above at temperatures of Ar3 transformation point or above directly or after reheating thereof; and cooling the hot-rolled steel sheet within 2 seconds down to the temperatures of from 600 to 750° C. at cooling speeds of from 100 to 2,000° C./sec, followed by coiling the cooled steel sheet at temperatures of from 450 to 650° C.
    Type: Application
    Filed: November 10, 2005
    Publication date: March 30, 2006
    Applicant: JFE STEEL CORPORATION
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Sadanori Imada, Takayuki Odake, Yasunobu Nagataki, Toru Inazumi
  • Publication number: 20050000606
    Abstract: A method for manufacturing a steel sheet comprising rough-rolling a steel consisting essentially of 0.04 to 0.12 weight % C, 0.25 to 2 weight % Si, 0.5 to 2.5 weight % Mn, 0.1 weight % or less Al, and a balance of substantially Fe and inevitable impurities to form a sheet bar; finish-rolling the sheet bar at a rolling end temperature of the Ar3 transformation point or more; primary-cooling the finish-rolled steel sheet within 1 second after completing the finish-rolling at a cooling speed of higher than 200° C./sec through a cooling range where-the difference between the start temperature of the cooling and the end temperature of the cooling is 100° C. to below 250° C.; slowly cooling the primary-cooled steel at a cooling speed of 10° C./sec or less, for 2 seconds to less than 20 seconds, at a temperature of 580° C. to 720° C.; and coiling the slowly cooled steel sheet at a temperature of 400° C. to below 540° C.
    Type: Application
    Filed: July 26, 2004
    Publication date: January 6, 2005
    Applicant: NKK CORPORATION
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Yoshimasa Funakawa, Hiroshi Nakata, Sadanori Imada, Toru Inazumi
  • Patent number: 6818079
    Abstract: A method for manufacturing a steel sheet comprising continuously casting a steel containing 0.04 to 0.2 wt. % C, 0.25 to 2 wt. % Si, 0.5 to 2.5 wt. % Mn, and 0.1 wt. % or less Al to form a slab; hot-rolling by rough-rolling the slab to form a sheet bar and finish-rolling the sheet bar with a reduction in thickness at the final stand of less than 30%, the finish-rolling being completed at a temperature from the Ar3 transformation point to the Ar3 transformation point +60° C.; primary-cooling the hot-rolled steel sheet, the primary cooling being started within 1 second after the completion of hot-rolling and conducting the cooling at a cooling speed of higher than 200° C./sec down to a temperature of Ar3 −30° C. to the Ar1 transformation point; slow cooling or air-cooling the primary-cooled steel sheet at a temperature of the Ar3 transformation point to the Ar1 transformation point at 10° C.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: November 16, 2004
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Yoshimasa Funakawa, Hiroshi Nakata, Sadanori Imada, Toru Inazumi
  • Publication number: 20040112482
    Abstract: The present invention relates to a high strength steel sheet consisting essentially of 0.04 to 0.1% C, 0.5% or less Si, 0.5 to 2% Mn, 0.05% or less P, 0.005% or less O, 0.005% or less S, by weight, having 10 &mgr;m or less of average ferritic grain size, and 20 mm/mm2 or less of generation frequency A, which generation frequency A is defined as the total length of a banded secondary phase structure observed per 1 mm2 of steel sheet cross section along the rolling direction thereof. The steel sheet is manufactured by, for example, a method comprising the steps of: hot-rolling a continuously cast slab having the composition described above at temperatures of Ar3 transformation point or above directly or after reheating thereof; and cooling the hot-rolled steel sheet within 2 seconds down to the temperatures of from 600 to 750° C. at cooling speeds of from 100 to 2,000° C./sec, followed by coiling the cooled steel sheet at temperatures of from 450 to 650° C.
    Type: Application
    Filed: July 23, 2003
    Publication date: June 17, 2004
    Applicant: NKK CORPORATION
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Sadanori Imada, Yasunobu Nagataki, Toru Inazumi
  • Patent number: 6663725
    Abstract: The present invention relates to a high strength steel sheet consisting essentially of 0.04 to 0.1% C, 0.5% or less Si, 0.5 to 2% Mn, 0.05% or less P, 0.005% or less 0, 0.005% or less S, by weight, having 10 &mgr;m or less of average ferritic grain size, and 20 mm/mm2 or less of generation frequency A, which generation frequency A is defined as the total length of a banded secondary phase structure observed per 1 mm2 of steel sheet cross section along the rolling direction thereof. The steel sheet is manufactured by, for example, a method comprising the steps of: hot-rolling a continuously cast slab having the composition described above at temperatures of Ar3 transformation point or above directly or after reheating thereof; and cooling the hot-rolled steel sheet within 2 seconds down to the temperatures of from 600 to 750° C. at cooling speeds of from 100 to 2,000° C./sec, followed by coiling the cooled steel sheet at temperatures of from 450 to 650° C.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: December 16, 2003
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Hiroyasu Kikuchi, Sadanori Imada, Takayuki Odake
  • Patent number: 6652670
    Abstract: The method for manufacturing steel sheet comprises the steps of: rough-rolling to form a sheet bar; finish-rolling the sheet bar to form a steel strip; applying primary cooling and secondary cooling to the finish-rolled steel strip; and coiling the secondary-cooled steel strip. The primary cooling is conducted at cooling speeds of 120° C./sec or more down to the temperatures of from 500 to 800° C. The secondary cooling is conducted at cooling speeds of less than 60° C./sec.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: November 25, 2003
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Yasuhide Ishiguro, Sadanori Imada, Toru Inazumi
  • Publication number: 20030205302
    Abstract: A method for manufacturing a steel sheet comprising continuously casting a steel containing 0.04 to 0.2 wt. % C, 0.25 to 2 wt. % Si, 0.5 to 2.5 wt. % Mn, and 0.1 wt. % or less Al to form a slab; hot-rolling by rough-rolling the slab to form a sheet bar and finish-rolling the sheet bar with a reduction in thickness at the final stand of less than 30%, the finish-rolling being completed at a temperature from the Ar3 transformation point to the Ar3 transformation point +60° C.; primary-cooling the hot-rolled steel sheet, the primary cooling being started within 1 second after the completion of hot-rolling and conducting the cooling at a cooling speed of higher than 200° C./sec down to a temperature of Ar3 −30° C. to the Ar1 transformation point; slow cooling or air-cooling the primary-cooled steel sheet at a temperature of the Ar3 transformation point to the Ar1 transformation point at 10° C.
    Type: Application
    Filed: May 27, 2003
    Publication date: November 6, 2003
    Applicant: NKK CORPORATION
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Yoshimasa Funakawa, Hiroshi Nakata, Sadanori Imada, Toru Inazumi
  • Patent number: 6632295
    Abstract: A high tensile strength hot-rolled steel sheet comprises 0.04 to 0.09% C, 0.1% or less Si, 0.5 to 1.5% Mn, 0.02% or less P, 0.01% or less S, 0.1% or less Al, 0.001 to 0.008% N, and 0.01 to 0.15% Ti, by mass %, the content of ingredient there each satisfying the equation (1), and the ferritic grain size &agr; (&mgr;m) satisfying the equation (2): [C]+7×[Si]+0.1×[Mn]+[P]+14×[S]+1.75×[Al] +23×[N]+[Ti]+18×[O]+7×[Cu]+18×[Sn]+7×[Mo]+ 1.7×[Cr]+70×[B]+7×[Ca]+14×[Zr]+14×[V]+7×[Nb] ≦2  (1) 3≦&agr;≦60×[Ti]+8  (2) where, [X] denotes the content (mass %) of element X.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: October 14, 2003
    Assignee: NKK Corporation
    Inventors: Hiroshi Nakata, Tadashi Inoue, Hiroyasu Kikuchi, Sadanori Imada, Akira Hiura, Takeshi Nakahara, Satoshi Ishijima, Yoshimasa Funakawa, Toru Inazumi
  • Patent number: 6623573
    Abstract: The method for manufacturing steel sheet comprises the steps of: forming a sheet bar; forming a steel strip; primary-cooling; air-cooling; secondary-cooling; and coiling. The sheet bar is finish-rolled at finish temperatures of (Ar3 transformation point −20° C.) or more. The primary cooling cools the finish-rolled steel strip at cooling speeds of more than 120° C./sec down to the temperatures ranging from 500 to 800° C.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: September 23, 2003
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Sadanori Imada
  • Publication number: 20020029828
    Abstract: A high tensile strength hot-rolled steel sheet comprises 0.04 to 0.09% C, 0.1% or less Si, 0.5 to 1.5% Mn, 0.02% or less P, 0.01% or less S, 0.1% or less Al, 0.001 to 0.008% N, and 0.01 to 0.
    Type: Application
    Filed: May 24, 2001
    Publication date: March 14, 2002
    Applicant: NKK CORPORATION
    Inventors: Hiroshi Nakata, Tadashi Inoue, Hiroyasu Kikuchi, Sadanori Imada, Akira Hiura, Takeshi Nakahara, Satoshi Ishijima, Yoshimasa Funakawa, Toru Inazumi
  • Publication number: 20020007882
    Abstract: The method for manufacturing steel sheet comprises the steps of: forming a sheet bar; forming a steel strip; primary-cooling; air-cooling; secondary-cooling; and coiling. The sheet bar is finish-rolled at finish temperatures of (Ar3 transformation point−20° C.) or more. The primary cooling cools the finish-rolled steel strip at cooling speeds of more than 120° C./sec down to the temperatures ranging from 500 to 800° C.
    Type: Application
    Filed: April 19, 2001
    Publication date: January 24, 2002
    Applicant: NKK CORPORATION
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Yoshimasa Funakawa, Hiroshi Nakata, Sadanori Imada, Toru Inazumi
  • Publication number: 20020000266
    Abstract: The present invention relates to a high strength steel sheet consisting essentially of 0.04 to 0.1% C, 0.5% or less Si, 0.5 to 2% Mn, 0.05% or less P, 0.005% or less 0, 0.005% or less S, by weight, having 10 &mgr;m or less of average ferritic grain size, and 20 mm/mm2 or less of generation frequency A, which generation frequency A is defined as the total length of a banded secondary phase structure observed per 1 mm2 of steel sheet cross section along the rolling direction thereof. The steel sheet is manufactured by, for example, a method comprising the steps of: hot-rolling a continuously cast slab having the composition described above at temperatures of Ar3 transformation point or above directly or after reheating thereof; and cooling the hot-rolled steel sheet within 2 seconds down to the temperatures of from 600 to 750° C. at cooling speeds of from 100 to 2,000° C. /sec, followed by coiling the cooled steel sheet at temperatures of from 450 to 650° C.
    Type: Application
    Filed: April 5, 2001
    Publication date: January 3, 2002
    Applicant: NKK CORPORATION
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Sadanori Imada, Takayuki Odake, Yasunobu Nagataki, Toru Inazumi
  • Publication number: 20010050119
    Abstract: The method for manufacturing steel sheet comprises the steps of: rough-rolling to form a sheet bar; finish-rolling the sheet bar to form a steel strip; applying primary cooling and secondary cooling to the finish-rolled steel strip; and coiling the secondary-cooled steel strip. The primary cooling is conducted at cooling speeds of 120° C./sec or more down to the temperatures of from 500 to 800° C. The secondary cooling is conducted at cooling speeds of less than 60° C./sec.
    Type: Application
    Filed: April 18, 2001
    Publication date: December 13, 2001
    Inventors: Tadashi Inoue, Yoichi Motoyashiki, Hiroyasu Kikuchi, Hiroshi Nakata, Takayuki Odake, Yasuhide Ishiguro, Sadanori Imada, Toru Inazumi