Patents by Inventor Hiroyuki Amano

Hiroyuki Amano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240246425
    Abstract: The controller of the electric vehicle is configured to control the torque of the electric motor using the MT vehicle model based on the operation amount of the accelerator pedal, the operation amount of the pseudo-clutch pedal, and the shift position of the pseudo-shifter. The electric vehicle also includes a pedal reaction force generator that generates a pedal reaction force in response to the operation of the pseudo-clutch pedal using by the operating of the reaction force actuator. The controller is configured to store the pedal reaction force characteristic simulating the characteristic of the pedal reaction force according to the operation of the clutch pedal. Then, the controller is configured to control the pedal reaction force output by the pedal reaction force generator in response to the operation of the pseudo-clutch pedal using the stored pedal reaction force characteristic.
    Type: Application
    Filed: April 4, 2024
    Publication date: July 25, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro ISAMI, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Publication number: 20240181894
    Abstract: The electric vehicle according to the present disclosure calculates motor torque using an MT vehicle model simulating an MT vehicle having a manual transmission and an internal combustion engine. In the first operation mode, an operation amount of a pseudo-clutch pedal and a shift position of a pseudo-gearshift are input to the MT vehicle model to reflect operation of the pseudo-clutch pedal and operation of the pseudo-gearshift in electric motor control. In the second operation mode where the operation of the pseudo-clutch pedal is not needed, an operation amount of a clutch pedal calculated by a driver model is input to the MT vehicle model instead of the operation amount of the pseudo-clutch pedal.
    Type: Application
    Filed: February 9, 2024
    Publication date: June 6, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akiko NISHIMINE, Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11999243
    Abstract: An electric vehicle includes a shift lever and a clutch pedal for simulating manual gear changes of a traditional vehicle equipped with an internal combustion engine and manual transmission, and includes a controller for controlling the operation of the electric vehicle. The driver operates the shift lever in a similar fashion to that of a traditional manual transmission shift lever, however the associated gear positions do not correspond to physical gears in a transmission but rather virtual gear stage modes that correspond to mapped torque characteristics with respect to the rotational speed of the electric motor. The clutch pedal is operated by the driver when the shift lever is operated. The controller calculates the virtual engine speed of the virtual engine based on the virtual gear stage mode selected by the shift lever and the operation amount of the clutch pedal, and displays the virtual engine speed on a display.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: June 4, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11993250
    Abstract: A drive force control system for a vehicle configured to accurately imitate a change in a drive force in a model vehicle. A drive torque simulator computes a virtual drive torque supposed to be delivered to drive wheels of the model vehicle in response to a manual operation to manipulate the vehicle, based on torque changing factors of a powertrain of the model vehicle. An actual torque calculator computes a target torque of a motor that is practically delivered to the drive wheels in the vehicle based on the virtual drive torque computed by the drive torque simulator, taking account of torque changing factors of the powertrain of the vehicle.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: May 28, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Imamura, Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11932118
    Abstract: The electric vehicle according to the present disclosure calculates motor torque using an MT vehicle model simulating an MT vehicle having a manual transmission and an internal combustion engine. In the first operation mode, an operation amount of a pseudo-clutch pedal and a shift position of a pseudo-gearshift are input to the MT vehicle model to reflect operation of the pseudo-clutch pedal and operation of the pseudo-gearshift in electric motor control. In the second operation mode where the operation of the pseudo-clutch pedal is not needed, an operation amount of a clutch pedal calculated by a driver model is input to the MT vehicle model instead of the operation amount of the pseudo-clutch pedal.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: March 19, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akiko Nishimine, Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11926222
    Abstract: An electric vehicle is configured to be able to perform running by an MT mode that controls an electric motor with a torque characteristic like an MT vehicle having a manual transmission and an internal combustion engine, and running by an EV mode that controls the electric motor with a normal torque characteristic. The electric vehicle includes a mode changeover switch for switching to the running by the MT mode.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: March 12, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11913517
    Abstract: A vibration damper that damp vibrations transmitted between a drive unit and a support body. The vibration damper comprises: an elastic member interposed between the drive unit and the support body; a rotor supported by the drive unit or the support body; and a vibration translating mechanism that rotates the rotor and reciprocates the rotor between the drive unit and the support body, in response to the vibrations acting in a vibrating direction to isolate the drive unit and the support body away from each other and bring the drive unit and the support body closer together.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: February 27, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiji Yoeda, Hiroyuki Amano, Shingo Okaya
  • Patent number: 11906040
    Abstract: A shifting device in which a selected shift position can be confirmed easily, and which can be fitted easily in vehicles. The shifting device comprises: a restriction member that restricts a movement of a shift lever into a predetermined shift slot in a first shifting mode, and that cancels the restriction of the movement of the shift lever in a second shifting mode; and an indicator that indicates a first pattern when the first shifting mode is selected, and that indicates a second pattern when the second shifting mode is selected.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: February 20, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Hiroyuki Amano, Takayuki Oshima, Makoto Takano, Yuta Tsukada, Kiyosuke Hayamizu, Hiroaki Kodera
  • Patent number: 11897338
    Abstract: The controller of the electric vehicle is configured to control the torque of the electric motor using the MT vehicle model based on the operation amount of the accelerator pedal, the operation amount of the pseudo-clutch pedal, and the shift position of the pseudo-shifter. Further, the controller is configured to execute the stall production process for changing the engine output torque used for calculation of the driving wheel torque to zero when the calculated virtual engine speed using the MT vehicle model becomes lower than the prescribed stall engine speed.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: February 13, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11876066
    Abstract: The bonding wire being a Pd-coated copper bonding wire includes: a copper core material; and a Pd layer and containing a sulfur group element, in which with respect to the total of copper, Pd, and the sulfur group element, a concentration of Pd is 1.0 mass % to 4.0 mass % and a total concentration of the sulfur group element is 50 mass ppm or less, and a concentration of S is 5 mass ppm to 2 mass ppm, a concentration of Se is 5 mass ppm to 20 mass ppm, or a concentration of Te is 15 mass ppm to 50 mass ppm or less. A wire bonding structure includes a Pd-concentrated region with the concentration of Pd being 2.0 mass % or more relative to the total of Al, copper, and Pd near a bonding surface of an Al-containing electrode of a semiconductor chip and a ball bonding portion.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 16, 2024
    Assignee: TANAKA DENSHI KOGYO K.K.
    Inventors: Hiroyuki Amano, Yuki Antoku, Takeshi Kuwahara, Tsukasa Ichikawa
  • Patent number: 11833908
    Abstract: The electric vehicle according to the present disclosure is configured to be able to select a traveling mode between an MT mode in which an electric motor is controlled with torque characteristics like an MT vehicle having a manual transmission and an internal combustion engine, and an EV mode in which the electric motor is controlled with normal torque characteristics. The controller of the electric vehicle controls the electric motor in the MT mode such that responsiveness of the motor torque with respect to a change in the operation amount of the accelerator pedal is lower than in the EV mode.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: December 5, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Publication number: 20230382238
    Abstract: A shifting device for an electric vehicle having a virtual manual transmission system, that is configured to realize a variety of shift patterns and torque characteristics. The shifting device comprises: an indicator that indicates a shift pattern; and an indication switcher that switches the shift pattern indicated in the indicator to another pattern. At least any one of the number of the shift positions and a virtual gear stage assigned to the shift position in the shift pattern switched by the indication switcher is different from that in the previous shift pattern indicated in the indicator before switched by the indication switcher.
    Type: Application
    Filed: May 1, 2023
    Publication date: November 30, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro ISAMI, Hiroyuki AMANO, Takayuki OSHIMA, Makoto TAKANO, Yuta TSUKADA, Kiyosuke HAYAMIZU, Hiroaki KODERA
  • Patent number: 11794718
    Abstract: The controller of the electric vehicle is configured to control the torque of the electric motor using the MT vehicle model based on the operation amount of the accelerator pedal, the operation amount of the pseudo-clutch pedal, and the shift position of the pseudo-shifter. The electric vehicle also includes a shift reaction force generator that generates a shift reaction force in response to the operation of the pseudo-shifter using by the operating of the reaction force actuator. The controller is configured to store the shift reaction force characteristic simulating the characteristic of the shift reaction force according to the operation of the shifter. Then, the controller is configured to control the shift reaction force output by the shift reaction force generator according to the operation of the pseudo-shifter using the stored shift reaction force characteristic.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: October 24, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Publication number: 20230304562
    Abstract: A vibration damper that effectively damps vibrations moving a drive unit and a support body closer to and away from each other by a rolling mass. The vibration damper comprises: an elastic member interposed between the drive unit and the support body; an arm extending from the drive unit toward the support body; a rolling mass rolled on the arm by a reciprocation of the arm; a support member fixed to the support body while rotatably supporting the rolling mass; and a position changer that changes a contact point between the rolling mass and the arm by reciprocating the arm.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 28, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiji YOEDA, Hiroyuki AMANO, Shingo OKAYA
  • Patent number: 11760209
    Abstract: The controller of the electric vehicle is configured to control the torque of the electric motor using the MT vehicle model based on the operation amount of the accelerator pedal, the operation amount of the pseudo-clutch pedal, and the shift position of the pseudo-shifter. Further, the controller is configured to execute the stall production process for changing the engine output torque used for calculation of the driving wheel torque to zero when the calculated virtual engine speed using the MT vehicle model becomes lower than the prescribed stall engine speed.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: September 19, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Publication number: 20230234589
    Abstract: A control system for an electric vehicle configured to simulate an engine stall which might occur in conventional vehicles while preventing the simulation of the engine stall in an unfavorable situation. A controller of the control system is configured to: execute an engine stall control to simulate a behavior of the conventional vehicle in a situation where an engine stall occurs by stopping a motor, when a virtual engine speed calculated by a virtual engine speed calculator falls below a predetermined speed; and execute a hold assist control to apply a brake torque to the wheel by the brake device upon execution of the engine stall control.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 27, 2023
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kentaroh KANZAKI, Yasunori MATSUMOTO, Yoichiro ISAMI, Yuta TSUKADA, Hiroyuki AMANO
  • Patent number: 11702094
    Abstract: The driving support apparatus includes a memory configured to store information representing a degree of familiarity with an environment for a driver of a vehicle; and a processor configured to detect an object existing around the vehicle based on a sensor signal representing a situation around the vehicle obtained by a sensor mounted on the vehicle, determine whether or not the object approaches the vehicle so that the object may collide with the vehicle, and notify the driver of the approach via a notification device mounted on the vehicle at a timing corresponding to the degree of familiarity with the environment for the driver of the vehicle, when it is determined that the object approaches the vehicle so that the object may collide with the vehicle.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: July 18, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiki Taki, Yohei Hareyama, Hiroyuki Amano, Kazuyuki Kagawa, Yuki Takahashi
  • Patent number: 11654779
    Abstract: A virtual manual transmission system for an electric vehicle for simulating the behavior of a vehicle having a manual transmission by controlling a motor while protecting an electric storage device. A controller is configured to: change torque of the motor when a virtual manual shifting is executed by operating a clutch device, an accelerator device, and a shifting device; and reduce a regulation on a change rate of the torque of the motor or an input/output power to/from the electric storage device.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: May 23, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Hiroyuki Amano, Takayuki Oshima, Makoto Takano, Yuta Tsukada, Kiyosuke Hayamizu, Hiroaki Kodera
  • Patent number: 11655877
    Abstract: A torsional vibration damper having improved abrasion resistance at a portion of a rotary member to which a rolling mass is contacted, and a manufacturing method thereof. The torsional vibration damper comprises: a rotary member; an inertia body oscillating around the rotary member; and a retainer formed on the rotary member to hold a rolling mass between a pair of stoppers. A hardness of an inner surface of at least one of the stoppers is increased higher in a radially outer portion than in a radially inner portion, within a reciprocating range of the rolling mass.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: May 23, 2023
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masayuki Ishibashi, Yu Shiraishi, Hiroyuki Amano
  • Patent number: 11654777
    Abstract: The electric vehicle according to the present disclosure is configured to be able to select a traveling mode between an MT mode in which an electric motor is controlled with torque characteristics like an MT vehicle having a manual transmission and an internal combustion engine, and an EV mode in which the electric motor is controlled with normal torque characteristics. When the selection of the travelling mode is changed by a driver, the controller of the electric vehicle determines whether a control mode can be switched, based on a condition in which the electric vehicle is placed, and switches the control mode in accordance with the determination result.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 23, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akiko Nishimine, Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Hiroaki Ebuchi, Hiroaki Kodera