Patents by Inventor Hiroyuki Hirata

Hiroyuki Hirata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210141291
    Abstract: A lens unit capable of checking the airtightness of a seal member between an object side lens and an inner circumferential surface of a lens barrel. A part of an end portion of an air hole on the object side is opened radially inward from the inner circumferential surface of the lens barrel, and at least part of the end portion of the air hole on the image side is opened. When the image side lens is in close contact with the lens installation surface of the flange portion, the air fills the lens barrel through the air hole. The seal member provided between the object side lens and the inner circumferential surface of the lens barrel is damaged or it's not attached to a predetermined position from the beginning, it's still possible to measure air leakages, thus rendering it possible to exactly check the airtightness of the seal member.
    Type: Application
    Filed: May 11, 2018
    Publication date: May 13, 2021
    Applicant: MAXELL, LTD.
    Inventor: Hiroyuki HIRATA
  • Publication number: 20200325565
    Abstract: An austenitic heat-resistant steel weld metal with low high-temperature cracking susceptibility and good creep strength is provided. The austenitic heat-resistant steel weld metal has a chemical composition of, in mass %: 0.06% -0.14% C; 0.1%-0.6%Si; 0.1%-1.8%Mn; up to 0.025% P; up to 0.003% S; 25%-35% Ni; 20%-24% Cr; more than 4.5% and up to 7.5% W; 0.05%-0.5% Nb; 0.05%-0.4% V; 0.1%-0.35% N; up to 0.08% Al; up to 0.08% O; and 0.0005 to 0.005% B, fn1 expressed by the following Equation (1) being not less than 10: fn1=10(Nb+V)+1.5W+20N+1500B?25Si ??(1), where, for Nb, V, W, N, B and Si in Equation (1), the contents of the named elements in mass % are substituted.
    Type: Application
    Filed: November 1, 2018
    Publication date: October 15, 2020
    Inventors: Shinnosuke KURIHARA, Hiroyuki HIRATA, Hiroyuki SEMBA, Kana JOTOKU
  • Publication number: 20200318225
    Abstract: A austenitic stainless steel which has a chemical composition consisting of, by mass %, C: 0.04 to 0.12%, Si: 0.25 to 0.55%, Mn: 0.7 to 2.0%, P: 0.035% or less, S: 0.0015% or less, Cu: 0.02 to 0.80%, Co: 0.02 to 0.80%, Ni: 10.0 to 14.0%, Cr: 15.5 to 17.5%, Mo: 1.5 to 2.5%, N: 0.01 to 0.10%, Al: 0.030% or less, O: 0.020% or less, Sn: 0 to 0.01%, Sb: 0 to 0.01%, As: 0 to 0.01%, Bi: 0 to 0.01%, V: 0 to 0.10%, Nb: 0 to 0.10%, Ti: 0 to 0.10%, W: 0 to 0.50%, B: 0 to 0.005%, Ca: 0 to 0.010%, Mg: 0 to 0.010% and REM: 0 to 0.10%, with the balance being Fe and impurities, and satisfying [18.0?Cr+Mo+1.5×Si?20.0] and [14.5?Ni+30×(C+N)+0.5×(Mn+Cu+Co)?19.5].
    Type: Application
    Filed: October 3, 2018
    Publication date: October 8, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki HIRATA, Katsuki TANAKA, Kana JOTOKU
  • Publication number: 20200283878
    Abstract: A austenitic stainless steel weld metal which has a chemical composition consisting of, by mass %, C: 0.01 to 0.10%, Si: 0.20 to 0.70%, Mn: 0.8 to 2.5%, P: 0.035% or less, S: 0.0030% or less, Cu: 0.01 to 0.60%, Co: 0.01 to 1.00%, Ni: 8.0 to 12.0%, Cr: 14.5 to 17.5%, Mo: 1.0 to 2.2%, N: 0.02 to 0.10%, Al: 0.030% or less, O: 0.020% or less, Sn: 0 to 0.01%, Sb: 0 to 0.01%, As: 0 to 0.01%, Bi: 0 to 0.01%, V: 0 to 0.10%, Nb: 0 to 0.10%, Ti: 0 to 0.10%, W: 0 to 0.50%, B: 0 to 0.005%, Ca: 0 to 0.010%, Mg: 0 to 0.010% and REM: 0 to 0.10%, with the balance being Fe and impurities, and satisfying [17.5?Cr+Mo+1.5×Si?19.5] and [11.0?Ni+30×(C+N)+0.5×(Mn+Cu+Co)?17.0].
    Type: Application
    Filed: October 3, 2018
    Publication date: September 10, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki HIRATA, Katsuki TANAKA, Kana JOTOKU
  • Publication number: 20200238444
    Abstract: A welding material for austenitic heat resistant steel is provided that has a chemical composition which consists of, by mass %, C: 0.06 to 0.14%, Si: 0.10 to 0.40%, Mn: 2.0 to 4.0%, P: 0.020% or less, Cu: 2.0 to 4.0%, Ni: 15.0 to 19.0%, Cr: 16.0 to 20.0%, Mo: 0.50 to 1.50%, Nb: 0.30 to 0.60%, N: 0.10 to 0.30%, Al: 0.030% or less, O: 0.020% or less, S: 0 to 0.0030%, Sn: 0 to 0.0030%, Bi: 0 to 0.0030%, Zn: 0 to 0.0030%, Sb: 0 to 0.0030%, As: 0 to 0.0030%, V: 0 to 0.50%, Ti: 0 to 0.50%, Ta: 0 to 0.50%, Co: 0 to 2.0%, B: 0 to 0.020%, Ca: 0 to 0.020%, Mg: 0 to 0.020%, REM: 0 to 0.06%, with the balance being Fe and impurities, and which contains two or more types of element selected from S, Sn, Bi, Zn, Sb and As within a range that satisfies [0.0005?S+Sn+Bi+Zn+Sb+As?0.0030].
    Type: Application
    Filed: October 3, 2018
    Publication date: July 30, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki HIRATA, Kana JOTOKU, Shinnosuke KURIHARA, Katsuki TANAKA
  • Publication number: 20200239986
    Abstract: An austenitic stainless steel weld metal which has a chemical composition consisting of, by mass %, C: 0.05 to 0.11%, Si: 0.10 to 0.50%, Mn: 1.0 to 2.5%, P: 0.035% or less, S: 0.0030% or less, Co: 0.01 to 1.00%, Ni: 9.0 to 11.5%, Cr: 17.0 to 21.0%, Nb: 0.60 to 0.90%, Ta: 0.001 to 0.100%, N: 0.01 to 0.15%, Al: 0.030% or less, O: 0.020% or less, V: 0 to 0.10%, Ti: 0 to 0.10%, W: 0 to 0.50%, Mo: 0 to 0.50%, Cu: 0 to 0.50%, B: 0 to 0.005%, Ca: 0 to 0.010%, Mg: 0 to 0.010% and REM: 0 to 0.10%, with the balance being Fe and impurities, and satisfying [Nb-7.8×C?0.25].
    Type: Application
    Filed: October 3, 2018
    Publication date: July 30, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki HIRATA, Kana JOTOKU, Katsuki TANAKA
  • Patent number: 10662497
    Abstract: A high-strength austenitic stainless steel, which has good hydrogen embrittlement resistance and hydrogen fatigue resistance, has a chemical composition including, in mass %, C: up to 0.10%; Si: up to 1.0%; Mn: not less than 3.0% and less than 7.0 %; Cr: 15 to 30%; Ni: not less than 12.0% and less than 17.0%; Al: up to 0.10%; N: 0.10 to 0.50%; P: up to 0.050%; S: up to 0.050%; at least one of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%; and other elements, the balance being Fe and impurities, wherein the ratio of the minor axis to the major axis of the austenite crystal grains is greater than 0.1, the crystal grain size number of austenite crystal grains is not lower than 8.0, and the tensile strength is not less than 1000 MPa.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: May 26, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Jun Nakamura, Tomohiko Omura, Hiroyuki Hirata, Kana Jotoku, Takahiro Osuki
  • Publication number: 20200157667
    Abstract: An austenitic stainless steel, which consists of by mass percent, C: not more than 0.02%, Si: not more than 1.5%, Mn: not more than 2%, Cr: 17 to 25%, Ni: 9 to 13%, Cu: more than 0.26% not more than 4%, N: 0.06 to 0.35%, sol. Al: 0.008 to 0.03%. One or more elements selected from Nb, Ti, V, TA, Hf, and Zr in controlled amounts can be included with the balance being Fe and impurities. P, S, Sn, As, Zn, Pb and Sb among the impurities are controlled as P: 0.006 to 0.04%, S: 0.0004 to 0.03%, Sn: 0.001 to 0.1%, As: not more than 0.01%, Zn: not more than 0.01%, Pb: not more than 0.01% and Sb: not more than 0.01%. The amounts of S, P, Sn, As, Zn, Pb and Sb and the amounts of Nb, Ta, Zr, Hf, and Ti are further controlled using formulas.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hiroyuki Hirata, Yoshitaka Nishiyama
  • Patent number: 10556298
    Abstract: A welded joint having high strength and good hydrogen embrittlement resistance is provided. A welded joint is a welded joint obtained by welding a base material using a welding material. The base material has a chemical composition of, in mass %: C: 0.005 to 0.1%; Si: up to 1.2%; Mn: 2.5 to 6.5%; Ni: 8 to 15%; Cr: 19 to 25%; Mo: 0.01 to 4.5%; V: 0.01 to 0.5%; Nb: 0.01 to 0.5% Al: less than 0.05%; N: 0.15 to 0.45%; O: up to 0.02%; P: up to 0.05%; and S: up to 0.04%, and a balance being iron and impurities, and which satisfies Equation (1). The welding material has a chemical composition which satisfies Equations (1) and (2). Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C?29??(1) 0.31C+0.048Si?0.02Mn?0.056Cr+0.007Ni?0.013Mo??1.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: February 11, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kana Jotoku, Hiroyuki Hirata, Tomohiko Omura, Jun Nakamura, Takahiro Osuki
  • Patent number: 10519533
    Abstract: A high Cr austenitic stainless steel with a chemical composition consisting of in terms of % by mass, 0.03 to 0.12% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.030% or less of P, 0.020% or less of S, 21.50 to 28.00% of Cr, more than 26.00 and not more than 35.00% of Ni, more than 2.00 and not more than 5.00% of W, 0.80% or less of Co, 0.01 to 0.70% of V, 0.15 to 1.00% of Nb, 0.001 to 0.040% of Al, 0.0001 to 0.0100% of B, 0.010 to 0.400% of N, 0.001 to 0.200% of Zr, 0.001 to 0.200% of Nd, 0.001 to 0.200% of Ta, 0.020 to 0.200% of Ta+0.8Nd+0.5Zr, 0.025% or less of Ti+Sn+Sb+Pb+As+Bi, 0.0090% or less of O, and a remainder consisting of Fe and impurities.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 31, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Atsuro Iseda, Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Toshihide Ono, Katsuki Tanaka, Tomoaki Hamaguchi, Kana Jotoku
  • Patent number: 10378091
    Abstract: A welded joint is obtained by using a welding material having a composition: Cr: 15.0 to 30.0%; and Ni: 40.0 to 70.0%, including: a base material having a composition: C: 0.03 to 0.075%; Si: 0.6 to 2.0%; Mn: 0.05 to 2.5%; P: up to 0.04%; S: up to 0.015%; Cr: more than 16.0% and less than 23.0%; Ni: not less than 20.0% and less than 30.0%; Cu: 0.5 to 10.0%; Mo: less than 1%; Al: up to 0.15%; N: 0.005 to 0.20%; O: up to 0.02%; Ca: 0 to 0.1%; REM: 0 to 0.15%; V: not less than 0% and less than 0.5%; and Nb: 0 to 2%, a balance being Fe and impurities and a first-layer weld metal including Fe content from 10 to 40%, all % by mass.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 13, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kana Jotoku, Hiroyuki Hirata, Yoshitaka Nishiyama, Hirokazu Okada, Shinnosuke Kurihara, Yuhei Suzuki
  • Publication number: 20190197047
    Abstract: A data analysis support apparatus includes: a relationship network generation section that analyzes a relationship between operating systems, a relationship between operation data tables, a relationship between data items possessed by the operation data tables and a relationship between data values possessed by records of the operation data tables and stores them, as a relationship network; a data item classification section that classifies data items that become a data analysis target into a first data type based on an actual value and a second data type based on a planned value or a pre-definition; an analysis data table generation section that generates and accumulates an analysis data table to be used for data analysis; a data model generation section that generates, as a data model, a data item group that allows data analysis in combination; and an analysis target item presentation section that recommends a data item to be made an analysis target.
    Type: Application
    Filed: July 21, 2017
    Publication date: June 27, 2019
    Inventors: Yuko YAMASHITA, Tsuyoshi MINAKAWA, Tomoe TOMIYAMA, Kenji KAWASAKI, Hidenori YAMAMOTO, Takeshi HANDA, Takashi TSUNO, Hiroyuki HIRATA
  • Patent number: 10266909
    Abstract: There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/?m2 or larger in cross section observation.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: April 23, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tomohiko Omura, Jun Nakamura, Hirokazu Okada, Hiroyuki Semba, Yusaku Tomio, Hiroyuki Hirata, Masaaki Igarashi, Kazuhiro Ogawa, Masaaki Terunuma
  • Patent number: 10260125
    Abstract: There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/?m2 or larger in cross section observation.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: April 16, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tomohiko Omura, Jun Nakamura, Hirokazu Okada, Hiroyuki Semba, Yusaku Tomio, Hiroyuki Hirata, Masaaki Igarashi, Kazuhiro Ogawa, Masaaki Terunuma
  • Publication number: 20180354059
    Abstract: The present invention provides a welding material for ferritic heat-resistant steel, a welded joint for ferritic heat-resistant steel, and a method for producing the welded joint for to form a weld metal having a high creep strength and a high toughness in welding a ferritic heat-resistant steel that contains B. The welding material for ferritic heat-resistant steel has a chemical composition containing, in mass %, C: 0.06 to 0.10%, Si: 0.1 to 0.4%, Mn: 0.3 to 0.7%, Co: 2.6 to 3.4%, Ni: 0.01 to 1.10%, Cr: 8.5 to 9.5%, W: 2.5 to 3.5%, Nb: 0.02 to 0.08%, V: 0.1 to 0.3%, Ta: 0.02 to 0.08%, B: 0.007 to 0.015%, N: 0.005 to 0.020%, with the balance being Fe and impurities, and satisfying Formula (1): 0.5?Cr+6Si+1.5W+11V+5Nb+10B?40C?30N?4Ni?2Co?2Mn?10.
    Type: Application
    Filed: December 16, 2016
    Publication date: December 13, 2018
    Inventors: Hiroyuki HIRATA, Kana JOTOKU, Tomoaki HAMAGUCHI, Toshihide ONO, Katsuki TANAKA
  • Publication number: 20180258505
    Abstract: An austenitic stainless steel with improved strength, ductility and weldability is provided. An austenitic stainless steel has a chemical composition of, in mass %: 0.005 to 0.07% C; 0.1 to 1.2% Si; 3.2 to 6.5% Mn; 9 to 14% Ni; a total of not less than 0.005% and less than 3% of at least one of Cu and Co; 19 to 24% Cr; 1 to 4% Mo; 0.05 to 0.4% Nb; 0.15 to 0.50% N; up to 0.05% Al; up to 0.03% P; up to 0.002% S; up to 0.02% O; 0 to 0.5% V; 0 to 0.5% Ti; 0 to 0.01% B; 0 to 0.05% Ca; 0 to 0.05% Mg; 0 to 0.5% REM; and the balance being Fe and impurities, where the amount of Nb analyzed as residues after electrolytic extraction is 0.01 to 0.3 mass %.
    Type: Application
    Filed: July 6, 2016
    Publication date: September 13, 2018
    Inventors: Hiroyuki Hirata, Kana Jotoku, Tomohiko Omura, Jun Nakamura, Masaaki Terunuma, Takahiro Osuki, Masaki Ueyama
  • Patent number: 10071754
    Abstract: A railcar according to the present disclosure includes a buffer installed in an end portion of each of coupled cars, and urging each other in a car longitudinal direction, the buffer having a stem movable in the car longitudinal direction and a spring urging the stem, an underframe internally enclosing part of the buffer and including an opening on a top plate of the underframe, and a compression mechanism forcibly compressing the spring to move the stem, part of the compression mechanism being freely brought into and out of the opening.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 11, 2018
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Hiroyuki Hirata, Ryosuke Ashida
  • Publication number: 20180216215
    Abstract: An austenitic heat-resistant alloy has a chemical composition of, in mass %: 0.04 to 0.14% C; 0.05 to 1% Si; 0.5 to 2.5% Mn; up to 0.03% P; less than 0.001% S; 23 to 32% Ni; 20 to 25% Cr 1 to 5% W; 0.1 to 0.6% Nb; 0.1 to 0.6% V; 0.1 to 0.3% N; 0.0005 to 0.01% B; 0.001 to 0.02% Sn; up to 0.03% AI; up to 0.02% 0; 0 to 0.5% Ti; 0 to 2% Co; 0 to 4% Cu; 0 to 4% Mo; 0 to 0.02% Ca; 0 to 0.02% Mg; 0 to 0.2% REM; and the balance being Fe and impurities. The alloy microstructure has a grain size number in accordance with ASTM E112 of 2.0 or more and less than 7.0.
    Type: Application
    Filed: June 2, 2016
    Publication date: August 2, 2018
    Inventors: Hiroyuki HIRATA, Hiroyuki SEMBA, Kana JOTOKU, Atsuro ISEDA, Toshihide ONO, Katsuki TANAKA
  • Patent number: 10011286
    Abstract: The present disclosure relates to a front door to be provided on an end panel of an end portion of a railcar. The front door includes a hinge provided at a first vertical side portion on the front door, the hinge supporting the front door rotatably toward the car interior side, a lock mechanism provided at a second vertical side portion on the front door, the lock mechanism locking the front door, and an emergency support mechanism that holds the front door on the end panel upon collision of an object with the front door in a locked state.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: July 3, 2018
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Hiroyuki Hirata, Hitoshi Nagahara, Naotake Honda, Toshiyuki Hirashima
  • Publication number: 20180179619
    Abstract: An austenitic heat-resistant alloy is provided that provides good crack resistance and high-temperature strength in a stable manner. The austenitic heat-resistant alloy has a chemical composition of, in mass %: 0.04 to 0.15% C; 0.05 to 1% Si; 0.3 to 2.5% Mn; up to 0.04% P; up to 0.0015% S; 2 to 4% Cu: 11 to 16% Ni; 16 to 20% Cr; 2 to 5 % W; 0.1 to 0.8% Nb; 0.05 to 0.35% Ti; 0.001 to 0.015% N; 0.0005 to 0.01% B; up to 0.03% Al; up to 0.02 % O; 0 to 0.02 % Sn; 0 to 0.5 % V; 0 to 2 % Co; 0 to 5% Mo; 0 to 0.02% Ca; 0 to 0.02% Mg; 0 to 0.2% REM; and the balance being Fe and impurities, the alloy having a microstructure with a grain size represented by a grain size number in accordance with ASTM E112 of 2.0 or more and less than 7.0.
    Type: Application
    Filed: June 2, 2016
    Publication date: June 28, 2018
    Inventors: Hiroyuki Hirata, Hirokazu Okada, Kana Jotoku, Atsuro Iseda, Toshihide Ono, Katsuki Tanaka