Patents by Inventor Hiroyuki Hoshiya

Hiroyuki Hoshiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120320473
    Abstract: A magnetic sensor having a novel hard bias structure that provides reduced gap spacing for increased data density. The magnetic sensor includes a sensor stack with first and second sides formed on a magnetic shield. A thin insulation layer is formed over the sides of the sensor stack and over the bottom shield. An under-layer comprising Cu—O is formed over the insulation layer and a hard magnetic bias layer is formed over the under-layer. The use of Cu—O as the under-layer allows the under-layer to be made thinner while still maintaining excellent magnetic properties in the hard bias layers formed thereover. This reduced thickness of the under-layer allows the gap spacing (spacing between the top and bottom magnetic shields) to be reduced, which in turn provides increased data density.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Susumu Okamura, Hiroyuki Hoshiya, Takahiro Ibusuki
  • Patent number: 8223463
    Abstract: A magnetoresistive head which has a high head SNR by reducing generated mag-noise without deteriorating an output comprises, according to one embodiment, a magnetoresistive sensor having a laminated structure which includes an antiferromagnetic layer, a magnetization pinned layer, a non-magnetic intermediate layer, a magnetization free layer, and a magnetization stable layer arranged adjacent to the magnetization free layer. The magnetization stable layer comprises non-magnetic coupling layer, a first ferromagnetic stable layer, an antiparallel coupling layer, and a second ferromagnetic stable layer. A magnetization quantity of a first ferromagnetic stable layer and a second ferromagnetic stable layer are substantially equal, and the magnetization of the first ferromagnetic stable layer and the second ferromagnetic stable layer are magnetically coupled in the antiparallel direction from each other.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: July 17, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hiroyuki Katada, Masato Shiimoto, Hiroyuki Hoshiya
  • Patent number: 8223464
    Abstract: In one embodiment, a differential-type magnetic read head includes a differential-type magneto-resistive-effect film formed on a substrate, and a pair of electrodes for applying current in a direction perpendicular to a film plane of the film. The film includes a first and second stacked film, each having a pinned layer, an intermediate layer, and a free layer, with the second stacked film being formed on the first stacked film. A side face in a track width direction of the film is shaped to have an inflection point at an intermediate position in a thickness direction of the film, and the side face is shaped to be approximately vertical to the substrate in an upward direction of the substrate from the inflection point. Also, the side face is shaped to be gradually increased in track width as approaching the substrate in a downward direction of the substrate from the inflection point.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: July 17, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kan Yasui, Masato Shiimoto, Takeshi Nakagawa, Hiroyuki Katada, Nobuo Yoshida, Hiroyuki Hoshiya
  • Patent number: 8189304
    Abstract: A magnetoresistive magnetic head according to one embodiment uses a current-perpendicular-to-plane magnetoresistive element having a laminate of a free layer, an intermediate layer, and a pinned layer, the pinned layer being substantially fixed to a magnetic field to be detected, wherein either the pinned layer or the free layer includes a Heusler alloy layer represented by a composition of X—Y—Z, wherein X is between about 45 at. % and about 55 at. % and is Co or Fe, Y accounts for between about 20 at. % and about 30 at. % and is one or more elements selected from V, Cr, Mn, and Fe, and Z is between about 20 at. % and about 35 at.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: May 29, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Susumu Okamura, Yo Sato, Katsumi Hoshino, Hiroyuki Hoshiya, Kenichi Meguro, Keizo Kato
  • Publication number: 20120112741
    Abstract: To provide a method which can define the direction and orientation of magnetization of a pinned layer while reducing the number of steps of forming a GMR film. The magnetization direction of the pinned layer is defined in a plurality of directions by forming a plurality of patterns having directivities. Further, when the magneto-resistive effect film is formed, a magnetic field is applied in a direction at an angle set between the angles of the plurality of patterns.
    Type: Application
    Filed: July 13, 2010
    Publication date: May 10, 2012
    Applicant: HITACHI METALS, LTD.
    Inventors: Kenichi Meguro, Hiroyuki Hoshiya, Keizou Katou, Yasunori Abe
  • Patent number: 8174799
    Abstract: Embodiments of the present invention help to provide a single element type differential magnetoresistive magnetic head capable of achieving high resolution and high manufacturing stability. According to one embodiment, a magnetoresistive layered film is formed by stacking an underlayer film, an antiferromagnetic film, a ferromagnetic pinned layer, a non-magnetic intermediate layer, a soft magnetic free layer, a long distance antiparallel coupling layered film, and a differential soft magnetic free layer. The long distance antiparallel coupling layered film exchange-couples the soft magnetic free layer and the differential soft magnetic free layer in an antiparallel state with a distance of about 3 nanometers through 20 nanometers. By manufacturing the single element type differential magnetoresistive magnetic head using the magnetoresistive layered film, it becomes possible to achieve the high resolution and the high manufacturing stability without spoiling the GMR effect.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: May 8, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hiroyuki Hoshiya, Kenichi Meguro, Katsumi Hoshino, You Sato, Hiroyuki Katada, Kazuhiro Nakamoto
  • Patent number: 8085499
    Abstract: Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: December 27, 2011
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Yoshiaki Kawato, Kazuhiro Nakamoto, Hiroyuki Hoshiya, Yasuyuki Okada, Masafumi Mochizuki
  • Patent number: 8081402
    Abstract: Embodiments of the present invention provide a magnetic head incorporating a CPP-GMR device having a high output at a suitable resistance. According to one embodiment, in a Current Perpendicular to Plane-Giant Magneto Resistive (CPP-GMR) head comprising a pinned layer, a free layer, and a current screen layer for confining current therein, a planarization treatment is applied to the surface of the current screen layer, thereby allowing the current screen layer to have a fluctuation in film thickness thereof. As a result of the fluctuation being provided in the film thickness of the current screen layer, parts of the current screen layer, smaller in the film thickness, will be selectively turned into metal areas low in resistance, and as the metal areas low in resistance serve as current paths, effects of confining current can be adjusted by controlling the fluctuation in the film thickness.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 20, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yo Sato, Katsumi Hoshino, Hiroyuki Hoshiya
  • Publication number: 20110134563
    Abstract: According to one embodiment, a magnetoresistive effect head includes a magnetically pinned layer having a direction of magnetization that is pinned, a free magnetic layer positioned above the magnetically pinned layer, the free magnetic layer having a direction of magnetization that is free to vary, and a barrier layer comprising an insulator positioned between the magnetically pinned layer and the free magnetic layer, wherein at least one of the magnetically pinned layer and the free magnetic layer has a layered structure, the layered structure including a crystal layer comprising one of: a CoFe magnetic layer or a CoFeB magnetic layer and an amorphous magnetic layer comprising CoFeB and an element selected from: Ta, Hf, Zr, and Nb, wherein the crystal layer is positioned closer to a tunnel barrier layer than the amorphous magnetic layer. In another embodiment, a magnetic data storage system includes the magnetoresistive effect head described above.
    Type: Application
    Filed: November 29, 2010
    Publication date: June 9, 2011
    Inventors: Kojiro Komagaki, Katsumi Hoshino, Masashige Sato, Hiroyuki Hoshiya
  • Patent number: 7881022
    Abstract: Embodiments in accordance with the present invention provide a sensor to produce high output with a small track width. Particular embodiments include forming a magnetoresistive sensor of a read head to be substantially vertical in its upper portion and gently upwardly convexly curved in its lower portion.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hisako Takei, Nobuo Yoshida, Hiroyuki Hoshiya, Taku Shintani
  • Patent number: 7876536
    Abstract: Embodiments of the present invention provides sufficiently high exchange coupling with a magnetic layer and improve the yield and reliability of a magnetoresistive head. By using a tilted growth crystalline structured antiferromagnetic film manufactured by an oblique incident deposition method, a high exchange coupling field with a ferromagnetic film can be obtained. As a result, excellent reliability and high output can be obtained in a magnetoresistive head utilizing features in accordance with embodiments of the present invention.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: January 25, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Katsumi Hoshino, Hiroyuki Hoshiya, Kenichi Meguro, Yo Sato
  • Publication number: 20110007417
    Abstract: Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
    Type: Application
    Filed: September 23, 2010
    Publication date: January 13, 2011
    Inventors: Yoshiaki KAWATO, Kazuhiro NAKAMOTO, Hiroyuki HOSHIYA, Yasuyuki OKADA, Masafumi MOCHIZUKI
  • Publication number: 20100327857
    Abstract: There is provided an angle sensor and angle detection device of high output and high accuracy with a wide operating temperature range. First through eighth sensor units 511, 522, 523, 514, 531, 542, 543 and 534 are produced from spin valve magnetoresistive films that use a self-pinned type ferromagnetic pinned layer comprising two layers of ferromagnetic films that are strongly and anti-ferromagnetically coupled. The respective sensor units are produced via the formation and patterning of thin-films magnetized at angles that differ by 90°, and the formation of insulation films. By using, for the ferromagnetic films, CoFe and FeCo films that have similar Curie temperatures to make the difference in magnetization amount be zero, high immunity to external magnetic fields, a broad adaptive temperature range, and high output are realized.
    Type: Application
    Filed: December 3, 2008
    Publication date: December 30, 2010
    Applicant: HITACHI METALS, LTD.
    Inventors: Hiroyuki Hoshiya, Kenichi Meguro, Kazuhiro Nakamoto, Yasunori Abe
  • Patent number: 7859797
    Abstract: Embodiments in accordance with the present invention provide a Current Perpendicular to the Plane—Giant Magnetoresistive (CPP-GMR) head exhibiting a high magnetoresistance (MR) ratio with a low area-resistance product. A lower shield is made up of a first shield layer/a crystalline reset layer/a second shield layer, and an amorphous material is used in at least a part of the crystalline reset layer, thereby controlling crystallinity of the second lower shield/the CPP-GMR head.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: December 28, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Katsumi Hoshino, Hiroyuki Hoshiya, Yasuyuki Okada
  • Patent number: 7813079
    Abstract: Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 12, 2010
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Yoshiaki Kawato, Kazuhiro Nakamoto, Hiroyuki Hoshiya, Yasuyuki Okada, Masafumi Mochizuki
  • Publication number: 20100188771
    Abstract: A magnetoresistive magnetic head according to one embodiment uses a current-perpendicular-to-plane magnetoresistive element having a laminate of a free layer, an intermediate layer, and a pinned layer, the pinned layer being substantially fixed to a magnetic field to be detected, wherein either the pinned layer or the free layer includes a Heusler alloy layer represented by a composition of X-Y-Z, wherein X is between about 45 at. % and about 55 at. % and is Co or Fe, Y accounts for between about 20 at. % and about 30 at. % and is one or more elements selected from V, Cr, Mn, and Fe, and Z is between about 20 at. % and about 35 at.
    Type: Application
    Filed: December 11, 2009
    Publication date: July 29, 2010
    Inventors: Susumu Okamura, Yo Sato, Katsumi Hoshino, Hiroyuki Hoshiya, Kenichi Meguro, Keizo Kato
  • Publication number: 20100142101
    Abstract: According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 10, 2010
    Inventors: Yo Sato, Katsumi Hoshino, Masato Shiimoto, Takeshi Nakagawa, Hiroyuki Hoshiya
  • Patent number: 7733614
    Abstract: Embodiments in accordance with the present invention provide a method of manufacturing a magneto-resistive head which can realize high sensitivity and good linear response characteristics with low noise even if a track width becomes narrower. A uniaxial anisotropy unaffected by annealing which is due to the orientation of the crystal grain growth direction, is induced in a magnetic layer. The free magnetic layer has the synthetic antiferromagnetic construction: first magnetic layer/interlayer antiferromagnetic coupling layer/second magnetic layer, the magnitude of the antiferromagnetic coupling is adjusted, and linear response characteristics are obtained even if a longitudinal biasing field applying mechanism is not provided.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 8, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kenichi Meguro, Hiroyuki Katada, Katsumi Hoshino, Hiroyuki Hoshiya
  • Publication number: 20100118448
    Abstract: In one embodiment, a differential-type magnetic read head includes a differential-type magneto-resistive-effect film formed on a substrate, and a pair of electrodes for applying current in a direction perpendicular to a film plane of the film. The film includes a first and second stacked film, each having a pinned layer, an intermediate layer, and a free layer, with the second stacked film being formed on the first stacked film. A side face in a track width direction of the film is shaped to have an inflection point at an intermediate position in a thickness direction of the film, and the side face is shaped to be approximately vertical to the substrate in an upward direction of the substrate from the inflection point. Also, the side face is shaped to be gradually increased in track width as approaching the substrate in a downward direction of the substrate from the inflection point.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Inventors: Kan Yasui, Masato Shiimoto, Takeshi Nakagawa, Hiroyuki Katada, Nobuo Yoshida, Hiroyuki Hoshiya
  • Publication number: 20100091413
    Abstract: According to one embodiment, a magnetic recording head includes a main pole having a throat height portion and a flare portion that is connected to the throat height portion, the flare portion gradually being expanded in width to an upper part in an element height direction. The head also includes a sub pole, magnetic shields disposed via a nonmagnetic layer on a trailing side of the main pole and on both sides in a track width direction of the main pole, and a coil for generating a recording magnetic field from the main pole. The nonmagnetic layer has an upper portion of which the thickness is increased stepwise or in a tapered manner in the element height direction with respect to an ABS side, and each portion of the magnetic shields adjacent to the main pole has a shape corresponding to a surface shape of the nonmagnetic layer.
    Type: Application
    Filed: September 14, 2009
    Publication date: April 15, 2010
    Inventors: Isao Nunokawa, Mikito Sugiyama, Kikuo Kusukawa, Hiroyuki Hoshiya