Patents by Inventor Hiroyuki Masuoka

Hiroyuki Masuoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140013814
    Abstract: This invention provides methods and apparatuses which can manufacture Si-containing cold rolled steel sheets exhibiting excellent chemical conversion properties even if a chemical conversion treatment solution is used at a lower temperature while minimally suppressing the generation of sludge as well as reducing running costs. The method includes steps of cold rolling a steel containing 0.5 to 3.0 mass % Si, continuously annealing the cold rolled steel sheet, pickling the surface of the continuously annealed cold rolled steel sheet, and repickling the surface of the pickled steel sheet with a non-oxidative acid. The repickling is performed such that a repickling solution is sampled continuously or periodically, an acid concentration in the sampled solution is measured, and the acid concentration in the repickling solution is regularly controlled within a prescribed concentration range.
    Type: Application
    Filed: March 26, 2012
    Publication date: January 16, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Tomohiro Matsushima, Masao Inose, Masayasu Nagoshi, Hiroyuki Masuoka, Shigeyuki Aizawa, Hisato Noro
  • Patent number: 8623514
    Abstract: A zinc-based metal plated steel sheet is excellent in tribological properties during press forming. An oxide layer containing crystalline 3Zn(OH)2.ZnSO4.xH2O is formed on a plated surface. The oxide layer has a thickness of 10 nm or more. The crystalline oxide layer is composed of 3Zn(OH)2.ZnSO4.3-5H2O.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 7, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yoichi Makimizu, Sakae Fujita, Naoto Yoshimi, Masahiko Tada, Shinji Ootsuka, Hiroyuki Masuoka, Katsuya Hoshino, Hiroshi Kajiyama, Masayasu Nagoshi, Wataru Tanimoto, Kyoko Fujimoto
  • Publication number: 20130149526
    Abstract: In a method of producing a cold-rolled steel sheet being excellent in not only the phosphate treatability but also the corrosion resistance after coating under severe corrosion environment such as hot salt water immersion test or composite cycle corrosion test, a continuously annealed steel sheet after cold rolling preferably including 0.5-3.0 mass % of Si is pickled to remove a Si-containing oxide layer on a surface layer of the steel sheet and further repickled so that a surface covering ratio of an iron-based oxide on the surface of the steel sheet is not more than 40% and preferably a maximum thickness of the iron-based oxide is not more than 150 nm, as well as a cold-rolled steel sheet produced by this method and a member for automobile using the cold-rolled steel sheet.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 13, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroyuki Masuoka, Satoru Ando, Shunsuke Yamamoto
  • Publication number: 20130149529
    Abstract: In a method of producing a cold-rolled steel sheet being excellent in not only the phosphate treatability but also the corrosion resistance after coating under severe corrosion environment such as hot salt water immersion test or composite cycle corrosion test, a continuously annealed steel sheet after cold rolling is pickled with a mixture of nitric acid and hydrochloric acid having a nitric acid concentration of more than 100 g/L but not more than 200 g/L and a ratio R (HCl/HNO3) of hydrochloric acid concentration to nitric acid concentration of 0.01-0.25 to remove Si-containing oxide formed on the steel sheet surface by continuous annealing, and a ratio of covering the surface of the steel sheet with an iron-based oxide formed by the pickling is not more than 85% and preferably a maximum thickness of the iron-based oxide existing on the surface of the steel sheet is not more than 200 nm.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 13, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroyuki Masuoka, Satoru Ando, Shunsuke Yamamoto
  • Publication number: 20120321903
    Abstract: A hot-pressed member includes a steel sheet, a Ni-diffusion region present in a surface layer of the steel sheet, and an intermetallic compound layer and a ZnO layer which are provided in order on the Ni-diffusion region, the intermetallic compound layer corresponding to a ? phase present in a phase equilibrium diagram of a Zn—Ni alloy, wherein a spontaneous immersion potential indicated in a 0.5 M NaCl aqueous air-saturated solution at 25° C.±5° C. is ?600 to ?360 mV based on a standard hydrogen electrode.
    Type: Application
    Filed: October 28, 2010
    Publication date: December 20, 2012
    Applicant: JFE Steel Corporation
    Inventors: Hiroki Nakamaru, Seiji Nakajima, Tatsuya Miyoshi, Hiroyuki Masuoka, Shinji Ootsuka
  • Publication number: 20120301709
    Abstract: A hot dip galvannealed steel sheet, which is a plated steel sheet, the plated sheet including an oxide layer being formed on the surface of the plated steel sheet, having an average thickness of 10 nm or more, and containing Zn and at least one element selected from the group consisting of Zr, Ti and Sn.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Applicant: JFE STEEL CORPRATION
    Inventors: Hiroyuki MASUOKA, Shoichiro TAIRA, Yoshiharu SUGIMOTO, Naoto YOSHIMI, Masayasu NAGOSHI, Wataru TANIMOTO
  • Patent number: 8268095
    Abstract: A method of manufacturing a hot dip galvannealed steel sheet, including the steps of: subjecting a steel sheet to hot dip galvanizing to manufacture a hot dip galvanized steel sheet; heating the hot dip galvanized steel sheet for alloying; subjecting the hot dip galvanized steel sheet to temper rolling; bringing the temper-rolled hot dip galvanized steel sheet into contact with an acid solution containing at least one ion selected from the group consisting of Zr ions, Ti ions, and Sn ions to thereby form an acid solution film on the surface of the steel sheet; after completion of the contact, a state where the acid solution film is formed on the surface of the steel sheet is held for at least 1 second; and washing with water the hot dip galvanized steel sheet after holding, to thereby form a Zn oxide layer having a thickness of 10 nm or more on the surface of the galvanized steel sheet.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: September 18, 2012
    Assignee: JFE Steel Corporation
    Inventors: Hiroyuki Masuoka, Shoichiro Taira, Yoshiharu Sugimoto, Naoto Yoshimi, Masayasu Nagoshi, Wataru Tanimoto
  • Patent number: 8221900
    Abstract: A zinc-based metal plated steel sheet is excellent in tribological properties during press forming. An oxide layer containing crystalline 3Zn(OH)2·ZnSO4·xH2O is formed on a plated surface. The oxide layer has a thickness of 10 nm or more. The crystalline oxide layer is composed of 3Zn(OH)2·ZnSO4·3-5H2O.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: July 17, 2012
    Assignee: JFE Steel Corporation
    Inventors: Yoichi Makimizu, Sakae Fujita, Naoto Yoshimi, Masahiko Tada, Shinji Ootsuka, Hiroyuki Masuoka, Katsuya Hoshino, Hiroshi Kajiyama, Masayasu Nagoshi, Wataru Tanimoto, Kyoko Fujimoto
  • Publication number: 20120135271
    Abstract: A hot dip Al—Zn coated steel sheet exhibits excellent corrosion resistance. The Al content in a coated film is 20-95% by mass. The Ca content is 0.01-10% by mass. Alternatively, the total content of Ca and Mg is 0.01-10% by mass. Preferably, the coated film includes an upper layer and an alloy phase present at the interface to a substrate steel sheet, and Ca or Ca and Mg are contained primarily in the upper layer. Also preferably, the Ca or Ca and Mg include an intermetallic compound with at least one type selected from Zn, Al, and Si. If Ca or Ca and Mg are contained in the coated film, as described above, these elements are contained in corrosion products generated in a bonded portion and exert effects of stabilizing the corrosion products and retarding proceeding of corrosion thereafter. Then, as a result, the corrosion resistance is improved.
    Type: Application
    Filed: May 27, 2010
    Publication date: May 31, 2012
    Applicant: JFE STEEL CORPORATION
    Inventors: Toshihiko Ooi, Hiroki Nakamura, Shinji Ootsuka, Hiroyuki Masuoka, Masahiro Yoshida
  • Publication number: 20120082845
    Abstract: A zinc-based metal plated steel sheet is excellent in tribological properties during press forming. An oxide layer containing crystalline 3Zn(OH)2.ZnSO4. xH2O is formed on a plated surface. The oxide layer has a thickness of 10 nm or more. The crystalline oxide layer is composed of 3Zn(OH)2.ZnSO4.3-5H2O.
    Type: Application
    Filed: December 8, 2011
    Publication date: April 5, 2012
    Applicant: JFE Steel Corporation
    Inventors: Yoichi Makimizu, Sakae Fujita, Naoto Yoshimi, Masahiko Tada, Shinji Ootsuka, Hiroyuki Masuoka, Katsuya Hoshino, Hiroshi Kajiyama, Masayasu Nagoshi, Wataru Tanimoto, Kyoko Fujimoto
  • Publication number: 20110236677
    Abstract: A method for producing a galvanized steel sheet includes contacting a steel sheet with a zinc-containing aqueous solution having a zinc ion concentration of 1 to 100 g/l, contacting the steel sheet with an aqueous solution with a pH of 6 to 14, washing the steel sheet with water, and then drying the steel sheet. An example of the zinc-containing aqueous solution is a solution containing zinc sulfate. According to the method, an oxide layer which has an average thickness of 10 nm or more and which principally contains zinc is formed on the steel sheet and the galvanized steel sheet can be stably produced at high speed in a reduced space so as to have excellent press formability.
    Type: Application
    Filed: April 22, 2009
    Publication date: September 29, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoichi Makimizu, Hiroshi Kajiyama, Sakae Fujita, Naoto Yoshimi, Masahiko Tada, Shinji Ootsuka, Hiroyuki Masuoka, Katsuya Hoshino
  • Publication number: 20110226387
    Abstract: A method for manufacturing a galvanized steel sheet, includes: galvanizing a steel sheet; bringing the surface of the steel sheet into contact with an aqueous solution containing zinc ion in the range of 5 to 100 g/l as the zinc ion concentration, having a pH of 4 to 6, and having a liquid temperature of 20 to 70° C., holding the steel sheet for 1 to 60 seconds; and then washing and drying the steel sheet. The solution containing zinc is preferably one containing zinc sulfate, for example. According to the method, a galvanized steel sheet having an oxide layer having an average thickness of 10 nm or more and mainly containing zinc formed on the surface of the steel sheet and having excellent press formability can be stably manufactured in a short time.
    Type: Application
    Filed: April 22, 2009
    Publication date: September 22, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoichi Makimizu, Hiroshi Kajiyama, Sakae Fujita, Naoto Yoshimi, Masahiko Tada, Hiroyuki Masuoka, Katsuya Hoshino, Masayasu Nagoshi
  • Publication number: 20100255341
    Abstract: A zinc-based metal plated steel sheet is excellent in tribological properties during press forming. An oxide layer containing crystalline 3Zn(OH)2.ZnSO4.xH2O is formed on a plated surface. The oxide layer has a thickness of 10 nm or more. The crystalline oxide layer is composed of 3Zn(OH)2.ZnSO4.3-5H2O.
    Type: Application
    Filed: September 3, 2008
    Publication date: October 7, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoichi Makimizu, Sakae Fujita, Naoto Yoshimi, Masahiko Tada, Shinji Ootsuka, Hiroyuki Masuoka, Katsuya Hoshino, Hiroshi Kajiyama, Masayasu Nagoshi, Wataru Tanimoto, Kyoko Fujimoto
  • Publication number: 20090239063
    Abstract: A method of manufacturing a hot dip galvannealed steel sheet, including the steps of: subjecting a steel sheet to hot dip galvanizing to manufacture a hot dip galvanized steel sheet; heating the hot dip galvanized steel sheet for alloying; subjecting the hot dip galvanized steel sheet to temper rolling; bringing the temper-rolled hot dip galvanized steel sheet into contact with an acid solution containing at least one ion selected from the group consisting of Zr ions, Ti ions, and Sn ions to thereby form an acid solution film on the surface of the steel sheet; after completion of the contact, a state where the acid solution film is formed on the surface of the steel sheet is held for at least 1 second; and washing with water the hot dip galvanized steel sheet after holding, to thereby form a Zn oxide layer having a thickness of 10 nm or more on the surface of the galvanized steel sheet.
    Type: Application
    Filed: April 26, 2007
    Publication date: September 24, 2009
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroyuki Masuoka, Shoichiro Taira, Yoshiharu Sugimoto, Naoto Yoshimi, Masayasu Nagoshi, Wataru Tanimoto