Patents by Inventor Hiroyuki Nagasawa

Hiroyuki Nagasawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11862460
    Abstract: According to one embodiment, a method of producing a SiC laminate having a hexagonal SiC layer and a 3C-SiC layer comprises: forming a seed plane parallel to a close-packed plane of the crystal lattice on the surface of the hexagonal SiC layer; providing an inclined plane, which is inclined with respect to the seed plane, to all faces adjacent to the seed plane; forming a two-dimensional nucleus of 3C-SiC on the seed plane; and epitaxially growing both the two-dimensional nucleus of 3C-SiC and the SiC layers exposed on the inclined plane simultaneously in a direction parallel to the close-packed plane of the crystal lattice.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 2, 2024
    Assignee: CUSIC INC.
    Inventor: Hiroyuki Nagasawa
  • Publication number: 20230298886
    Abstract: According to one embodiment, a method of producing a SiC laminate having a hexagonal SiC layer and a 3C-SiC layer comprises: forming a seed plane parallel to a close-packed plane of the crystal lattice on the surface of the hexagonal SiC layer; providing an inclined plane, which is inclined with respect to the seed plane, to all faces adjacent to the seed plane; forming a two-dimensional nucleus of 3C-SiC on the seed plane; and epitaxially growing both the two-dimensional nucleus of 3C-SiC and the SiC layers exposed on the inclined plane simultaneously in a direction parallel to the close-packed plane of the crystal lattice.
    Type: Application
    Filed: April 27, 2021
    Publication date: September 21, 2023
    Inventor: Hiroyuki NAGASAWA
  • Patent number: 11346018
    Abstract: A silicon carbide substrate production method includes: the step of providing covering layers 1b, 1b, each containing silicon oxide, silicon nitride, silicon carbonitride, or silicide, respectively on both surfaces of a base material substrate 1a carbon, silicon or silicon carbide, and turning the surface of each of the covering layers 1b, 1b into a smooth surface to prepare a support substrate 1; a step of forming a polycrystalline silicon carbide film 10 on both surfaces of the support substrate 1 by a gas phase growth method or a liquid phase growth method; and a step of separating the polycrystalline silicon carbide films from the support substrate while preserving, on the surface thereof, the smoothness of the covering layer surfaces 1b, 1b by chemically removing at least the covering layers 1b, 1b, from the support substrate 1. The silicon carbide substrate has a smooth surface and reduced internal stress.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: May 31, 2022
    Assignees: Shin-Etsu Chemical Co., Ltd., CUSIC Inc.
    Inventors: Hiroyuki Nagasawa, Yoshihiro Kubota, Shoji Akiyama
  • Patent number: 11208719
    Abstract: Provided is an SiC composite substrate 10 having a monocrystalline SiC layer 12 on a polycrystalline SiC substrate 11, wherein: some or all of the interface at which the polycrystalline SiC substrate 11 and the monocrystalline SiC layer 12 are in contact is an unmatched interface I12/11 that is not lattice-matched; the monocrystalline SiC layer 12 has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate 11, a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane 11p) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate 11 is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer 12. The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 28, 2021
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Patent number: 11177123
    Abstract: A compound semiconductor laminate substrate comprising two single-crystalline compound semiconductor substrates directly bonded together and laminated, the single-crystalline compound semiconductor substrates having the same composition including A and B as constituent elements and having the same atomic arrangement, characterized in that the front and back surfaces of the laminate substrate are polar faces comprising the same kind of atoms of A or B, and that a laminate interface comprises a bond of atoms of either B or A and is a unipolar anti-phase region boundary plane in which the crystal lattices of the atoms are matched. In this way, the polar faces of the front and rear surfaces of the compound semiconductor laminate substrate are made monopolar, thereby facilitating semiconductor element process designing, and making it possible to manufacture a low-cost, high-performance, and stable semiconductor element without implementing complex substrate processing.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 16, 2021
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Hiroyuki Nagasawa, Yoshihiro Kubota, Shoji Akiyama
  • Patent number: 10829868
    Abstract: A manufacturing method of an SiC composite substrate 10 that includes a single crystal SiC layer 12 on a polycrystalline SiC substrate 11. After manufacturing a single crystal SiC layer supporting body 14 by providing the single crystal SiC layer 12 on one surface of a holding substrate 21 including Si. A polycrystalline SiC is deposited on the single crystal SiC layer 12 through chemical vapor deposition to manufacture an SiC laminated body 15 laminated with the single crystal SiC layer 12 and the polycrystalline SiC layer 11 having a thickness t on the holding substrate 21?. At the same time, the single crystal SiC layer supporting body 14 is heated at a temperature less than 1,414 degrees Celsius, and a portion of the thickness t of the polycrystalline SiC is deposited. Then, the holding substrate 21? is physically and/or chemically removed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 10, 2020
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Hiroyuki Nagasawa
  • Patent number: 10711373
    Abstract: Provided is an SiC composite substrate 10 having a monocrystalline SiC layer 12 on a polycrystalline SiC substrate 11, wherein: some or all of the interface at which the polycrystalline SiC substrate 11 and the monocrystalline SiC layer 12 are in contact is an unmatched interface I12/11 that is not lattice-matched; the monocrystalline SiC layer 12 has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate 11, a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane 11p) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate 11 is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer 12. The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 14, 2020
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Publication number: 20200149189
    Abstract: Provided is an SiC composite substrate 10 having a monocrystalline SiC layer 12 on a polycrystalline SiC substrate 11, wherein: some or all of the interface at which the polycrystalline SiC substrate 11 and the monocrystalline SiC layer 12 are in contact is an unmatched interface I12/11 that is not lattice-matched; the monocrystalline SiC layer 12 has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate 11, a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane 11p) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate 11 is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer 12. The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Applicants: Shin-Etsu Chemical Co., Ltd., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Patent number: 10612157
    Abstract: Provided is a method for manufacturing an SiC composite substrate 10 having a single-crystal SiC layer 12 on a polycrystalline SiC substrate 11, wherein: the single-crystal SiC layer 12 is provided on one surface of a holding substrate 21 comprising Si, and a single-crystal SiC-layer carrier 14 is prepared; polycrystalline SiC is then accumulated on the single-crystal SiC layer 12 by a physical or chemical means, and an SiC laminate 15 is prepared in which the single-crystal SiC layer 12 and the polycrystalline SiC substrate 11 are laminated on the holding substrate 21; and the holding substrate 21 is then physically and/or chemically removed. With the present invention, an SiC composite substrate having a single-crystal. SiC layer with good crystallinity is obtained with a simple manufacturing process.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: April 7, 2020
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Publication number: 20200006046
    Abstract: A compound semiconductor laminate substrate comprising two single-crystalline compound semiconductor substrates directly bonded together and laminated, the single-crystalline compound semiconductor substrates having the same composition including A and B as constituent elements and having the same atomic arrangement, characterized in that the front and back surfaces of the laminate substrate are polar faces comprising the same kind of atoms of A or B, and that a laminate interface comprises a bond of atoms of either B or A and is a unipolar anti-phase region boundary plane in which the crystal lattices of the atoms are matched. In this way, the polar faces of the front and rear surfaces of the compound semiconductor laminate substrate are made monopolar, thereby facilitating semiconductor element process designing, and making it possible to manufacture a low-cost, high-performance, and stable semiconductor element without implementing complex substrate processing.
    Type: Application
    Filed: February 15, 2018
    Publication date: January 2, 2020
    Applicants: Shin-Etsu Chemical Co., Ltd., CUSIC INC.
    Inventors: Hiroyuki Nagasawa, Yoshihiro Kubota, Shoji Akiyama
  • Publication number: 20190382918
    Abstract: A silicon carbide substrate production method includes: the step of providing covering layers 1b, 1b, each containing silicon oxide, silicon nitride, silicon carbonitride, or silicide, respectively on both surfaces of a base material substrate 1a carbon, silicon or silicon carbide, and turning the surface of each of the covering layers 1b, 1b into a smooth surface to prepare a support substrate 1; a step of forming a polycrystalline silicon carbide film 10 on both surfaces of the support substrate 1 by a gas phase growth method or a liquid phase growth method; and a step of separating the polycrystalline silicon carbide films from the support substrate while preserving, on the surface thereof, the smoothness of the covering layer surfaces 1b, 1b by chemically removing at least the covering layers 1b, 1b, from the support substrate 1. The silicon carbide substrate has a smooth surface and reduced internal stress.
    Type: Application
    Filed: March 1, 2018
    Publication date: December 19, 2019
    Applicants: Shin-Etsu Chemical Co., Ltd., CUSIC Inc.
    Inventors: Hiroyuki Nagasawa, Yoshihiro Kubota, Shoji Akiyama
  • Patent number: 10431460
    Abstract: A method for producing a SiC composite substrate 10 having a single crystal SiC layer 12 on a polycrystalline SiC substrate 11. After the single crystal SiC layer 12 is provided on the front surface of a holding substrate 21 including Si and having a silicon oxide film 21a on the front and back surfaces thereof to produce a single crystal SiC layer supporting body 14, a part or all of the thickness of the silicon oxide film 21a on one area or all of the back surface of the holding substrate 21 in the single crystal SiC layer supporting body 14 is removed to impart warpage to the single crystal SiC layer supporting body 14?. Then, polycrystalline SiC is deposited on the single crystal SiC layer 12 by chemical vapor deposition to form the polycrystalline SiC substrate 11, and the holding substrate is physically and/or chemically removed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: October 1, 2019
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Hiroyuki Nagasawa
  • Patent number: 10335641
    Abstract: The invention provides a golf ball having a core and a cover of one or more layer encasing the core, wherein, letting HU-A and HU-B be respectively the Martens hardnesses measured at positions 100 ?m and 200 ?m inward from a surface of an outermost layer of the cover and toward a center of the core, and letting HU-C be the Martens hardness measured at a position 100 ?m from an inner side of the outermost cover layer and toward the surface, HU-A or HU-B is harder than HU-C.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: July 2, 2019
    Assignee: Bridgestone Sports Co., Ltd.
    Inventors: Katsunobu Mochizuki, Hiroyuki Nagasawa
  • Publication number: 20190157087
    Abstract: A method for producing a SiC composite substrate 10 having a single crystal SiC layer 12 on a polycrystalline SiC substrate 11. After the single crystal SiC layer 12 is provided on the front surface of a holding substrate 21 including Si and having a silicon oxide film 21a on the front and back surfaces thereof to produce a single crystal SiC layer supporting body 14, a part or all of the thickness of the silicon oxide film 21a on one area or all of the back surface of the holding substrate 21 in the single crystal SiC layer supporting body 14 is removed to impart warpage to the single crystal SiC layer supporting body 14?. Then, polycrystalline SiC is deposited on the single crystal SiC layer 12 by chemical vapor deposition to form the polycrystalline SiC substrate 11, and the holding substrate is physically and/or chemically removed.
    Type: Application
    Filed: September 9, 2016
    Publication date: May 23, 2019
    Applicants: Shin-Etsu Chemical Co., Ltd., CUSIC Inc.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Hiroyuki Nagasawa
  • Patent number: 10283594
    Abstract: A silicon carbide (SiC) structure and a method of forming the SiC structure are disclosed. The SiC structure includes an SiC substrate and a film provided on the SiC substrate. The SiC substrate contains both of a hexagonal close packed (hcp) structure and a face centered cubic (fcc) structure, and has only one of the hcp surface and the fcc surface, where the hcp surface includes atoms in the topmost layer whose rows overlap with rows of atoms in the third layer, while, the fcc surface includes atoms in the topmost layer whose rows are different from rows of atoms in the third layer.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: May 7, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOHOKU UNIVERSITY
    Inventors: Hiroyuki Nagasawa, Maki Suemitsu, Hirokazu Fukidome, Yasunori Tateno, Fuminori Mitsuhashi, Masaya Okada, Masaki Ueno
  • Patent number: 10232227
    Abstract: In a golf ball having a core and a cover of one or more layer encasing the core, an outermost layer of the cover is molded of a thermoplastic material selected from the group consisting of polyurethane, polyurea and mixtures thereof, and the surface of the cover is treated with a polyisocyanate compound that is free of organic solvent. A method of manufacturing the golf ball is also described. Such golf balls are endowed with an excellent spin performance and scuff resistance, in addition to which productivity of the golf balls is high.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: March 19, 2019
    Assignee: Bridgestone Sports Co., Ltd.
    Inventors: Hiroyuki Nagasawa, Katsunobu Mochizuki
  • Patent number: 10137334
    Abstract: The invention provides a method of manufacturing a golf ball having a core and a cover of one or more layer over the core, wherein an outermost layer of the cover is molded of a thermoplastic material selected from the group consisting of polyurethane, polyurea and mixtures thereof. The method includes at least the following steps (1) and (2): (1) treating a surface of the cover with an isocyanate compound; and (2) washing off and physically removing excess isocyanate compound by blasting the cover surface with a specific substance at high pressure.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: November 27, 2018
    Assignee: Bridgestone Sports Co., Ltd.
    Inventors: Katsunobu Mochizuki, Hiroyuki Nagasawa, Kanae Tajima, Masahiro Yamabe
  • Publication number: 20180334757
    Abstract: Provided is a method for manufacturing an SiC composite substrate 10 having a single-crystal SiC layer 12 on a polycrystalline SiC substrate 11, wherein: the single-crystal SiC layer 12 is provided on one surface of a holding substrate 21 comprising Si, and a single-crystal SiC-layer carrier 14 is prepared; polycrystalline SiC is then accumulated on the single-crystal SiC layer 12 by a physical or chemical means, and an SiC laminate 15 is prepared in which the single-crystal SiC layer 12 and the polycrystalline SiC substrate 11 are laminated on the holding substrate 21; and the holding substrate 21 is then physically and/or chemically removed. With the present invention, an SiC composite substrate having a single-crystal. SiC layer with good crystallinity is obtained with a simple manufacturing process.
    Type: Application
    Filed: September 7, 2016
    Publication date: November 22, 2018
    Applicants: Shin-Etsu Chemical Co., Ltd., CUSIC Inc.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Publication number: 20180290025
    Abstract: The invention provides a golf ball having a core and a cover of one or more layer encasing the core, wherein, letting HU-A and HU-B be respectively the Martens hardnesses measured at positions 100 ?m and 200 ?m inward from a surface of an outermost layer of the cover and toward a center of the core, and letting HU-C be the Martens hardness measured at a position 100 ?m from an inner side of the outermost cover layer and toward the surface, HU-A or HU-B is harder than HU-C.
    Type: Application
    Filed: June 1, 2018
    Publication date: October 11, 2018
    Applicant: Bridgestone Sports Co., Ltd.
    Inventors: Katsunobu MOCHIZUKI, Hiroyuki NAGASAWA
  • Publication number: 20180251911
    Abstract: Provided is an SiC composite substrate 10 having a monocrystalline SiC layer 12 on a polycrystalline SiC substrate 11, wherein: some or all of the interface at which the polycrystalline SiC substrate 11 and the monocrystalline SiC layer 12 are in contact is an unmatched interface I12/11 that is not lattice-matched; the monocrystalline SiC layer 12 has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate 11, a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane 11p) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate 11 is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer 12. The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer.
    Type: Application
    Filed: September 8, 2016
    Publication date: September 6, 2018
    Applicants: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa