Patents by Inventor Hiroyuki Oyanagi

Hiroyuki Oyanagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200287496
    Abstract: An electric motor control device includes an electronic control unit configured to perform switching control of a switching element of an inverter in PWM control mode when a modulation degree is less than a first predetermined value, perform switching control of the switching element in square wave control mode when the modulation degree is greater than or equal to a second predetermined value, and perform switching control of the switching element in intermediate control mode when the modulation degree is greater than or equal to the first predetermined value and less than the second predetermined value. The intermediate control mode uses a switching pattern in which, in a pulse pattern in the square wave control mode, a slit or a short pulse having the same width as the slit is formed according to whether a pulse is present at the time when a phase current crosses zero.
    Type: Application
    Filed: February 19, 2020
    Publication date: September 10, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshihiro SHAMOTO, Hiroyuki OYANAGI
  • Publication number: 20200259445
    Abstract: There is provided a driving system including a motor; an inverter configured to drive the motor; a power storage device connected with the inverter via a power line; a smoothing capacitor mounted to the power line; a voltage sensor configured to detect a voltage of the smoothing capacitor; a current sensor configured to detect an electric current of each phase of the motor; and a control device configured to control the inverter, based on a detected value of the current sensor. The control device performs Fourier series expansion of a detected value of the voltage sensor to calculate an electrical first variation component of the voltage of the smoothing capacitor. The control device controls the inverter, such that the electrical first variation component of the voltage of the smoothing capacitor becomes equal to a value 0.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 13, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji IRIE, Hiroyuki OYANAGI, Toshifumi YAMAKAWA
  • Patent number: 10723233
    Abstract: A controller of an electrically powered vehicle includes an electronic control unit. The electronic control unit performs a switching control by a square wave control in a first switching mode when a rotation speed of the motor is equal to or higher than a first predetermined rotation speed. The electronic control unit performs the switching control by the square wave control in a second switching mode when the rotation speed of the motor is lower than the first predetermined rotation speed. The first predetermined rotation speed is a rotation speed lower than a first resonance region. The first switching mode is a mode of a switching pattern that suppresses LC resonance in the first resonance region. The second switching mode is a mode of a switching pattern that suppresses LC resonance in a second resonance region lower than the first predetermined rotation speed.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: July 28, 2020
    Assignee: DENSO CORPORATION
    Inventors: Yoshihiro Shamoto, Kazuhito Hayashi, Hiroyuki Oyanagi
  • Publication number: 20190248248
    Abstract: A controller of an electrically powered vehicle includes an electronic control unit. The electronic control unit performs a switching control by a square wave control in a first switching mode when a rotation speed of the motor is equal to or higher than a first predetermined rotation speed. The electronic control unit performs the switching control by the square wave control in a second switching mode when the rotation speed of the motor is lower than the first predetermined rotation speed. The first predetermined rotation speed is a rotation speed lower than a first resonance region. The first switching mode is a mode of a switching pattern that suppresses LC resonance in the first resonance region. The second switching mode is a mode of a switching pattern that suppresses LC resonance in a second resonance region lower than the first predetermined rotation speed.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 15, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshihiro SHAMOTO, Kazuhito HAYASHI, Hiroyuki OYANAGI
  • Patent number: 10259342
    Abstract: An overall loss L during non-execution of intermittent boosting (in ordinary boosting) is calculated from losses L1 and L2 of motors and a loss LC of a boost converter during non-execution of intermittent boosting. The overall loss L during execution of intermittent boosting is calculated from the losses L1 and L2 of the motors and the loss LC of the boost converter during execution of intermittent boosting. A minimum loss-time boosting voltage Vtmp at which the overall loss L provides a minimum loss Ltmp is set to a target voltage VH*. The boost converter is then controlled in a control state corresponding to the minimum loss-time boosting voltage Vtmp.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: April 16, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Oyanagi, Tatsuhiko Hayashi
  • Publication number: 20170327003
    Abstract: An overall loss L during non-execution of intermittent boosting (in ordinary boosting) is calculated from losses L1 and L2 of motors and a loss LC of a boost converter during non-execution of intermittent boosting. The overall loss L during execution of intermittent boosting is calculated from the losses L1 and L2 of the motors and the loss LC of the boost converter during execution of intermittent boosting. A minimum loss-time boosting voltage Vtmp at which the overall loss L provides a minimum loss Ltmp is set to a target voltage VH*. The boost converter is then controlled in a control state corresponding to the minimum loss-time boosting voltage Vtmp.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 16, 2017
    Inventors: Hiroyuki Oyanagi, Tatsuhiko Hayashi
  • Patent number: 9184681
    Abstract: A vehicle, including a motor having a rotor, a resolver that detects a rotation angle of the rotor and a control device, and a control method for the vehicle are provided. The control device executes rectangular-wave control over the motor using the rotation angle of the rotor, detected by the resolver, executes zero learning for learning a deviation between an origin of an actual rotation angle of the rotor and an origin of the detected rotation angle of the rotor, corrects the detected rotation angle of the rotor on the basis of a result of the zero learning, and, when the zero learning has not been completed yet, executes avoidance control for avoiding a rapid variation in output of the motor.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: November 10, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hichirosai Oyobe, Tetsutaka Yamamoto, Hiroyuki Oyanagi
  • Patent number: 9077275
    Abstract: A rotor position estimating device includes a voltage application unit, a current detecting unit and an estimating unit. The voltage application unit is configured to apply a d-axis voltage to an electric motor including a salient-pole rotor during a stop of the electric motor. The current detecting unit is configured to detect a q-axis current flowing through the electric motor at the time when the d-axis voltage is applied. The estimating unit is configured to estimate a rotor position during a stop of the electric motor on the basis of the q-axis current detected by the current detecting unit. The voltage application unit is configured to set a voltage application time in correspondence with peak timing at which the q-axis current reaches a peak in a transitional response characteristic of the q-axis current at the time when the d-axis voltage is applied.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: July 7, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hichirosai Oyobe, Takuya Nishimoto, Hiroyuki Oyanagi
  • Publication number: 20140062359
    Abstract: A vehicle, including a motor having a rotor, a resolver that detects a rotation angle of the rotor and a control device, and a control method for the vehicle are provided. The control device executes rectangular-wave control over the motor using the rotation angle of the rotor, detected by the resolver, executes zero learning for learning a deviation between an origin of an actual rotation angle of the rotor and an origin of the detected rotation angle of the rotor, corrects the detected rotation angle of the rotor on the basis of a result of the zero learning, and, when the zero learning has not been completed yet, executes avoidance control for avoiding a rapid variation in output of the motor.
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hichirosai OYOBE, Tetsutaka YAMAMOTO, Hiroyuki OYANAGI
  • Publication number: 20140062353
    Abstract: A rotor position estimating device includes a voltage application unit, a current detecting unit and an estimating unit. The voltage application unit is configured to apply a d-axis voltage to an electric motor including a salient-pole rotor during a stop of the electric motor. The current detecting unit is configured to detect a q-axis current flowing through the electric motor at the time when the d-axis voltage is applied. The estimating unit is configured to estimate a rotor position during a stop of the electric motor on the basis of the q-axis current detected by the current detecting unit. The voltage application unit is configured to set a voltage application time in correspondence with peak timing at which the q-axis current reaches a peak in a transitional response characteristic of the q-axis current at the time when the d-axis voltage is applied.
    Type: Application
    Filed: August 6, 2013
    Publication date: March 6, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hichirosai OYOBE, Takuya NISHIMOTO, Hiroyuki OYANAGI
  • Patent number: 8115423
    Abstract: A plurality of current sensors are provided to correspond to a plurality of inverter circuits for driving a plurality of motor generators, respectively. Zero point adjustment of each current sensor is executed in a non-energized state recognized based on a stop of operation of the corresponding inverter circuit and when noise influence is determined to be small based on stops of operations of the other inverter circuits in the same casing. As a result, it is possible to avoid a risk of performing the zero point adjustment in a state in which an output of the current sensor is not exactly a value corresponding to zero current due to the noise influence from the other inverter circuits. In this way, it is possible to highly accurately execute the zero point adjustment of the current sensor for measuring motor driving current.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: February 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideto Hanada, Hiroyuki Oyanagi
  • Patent number: 8021798
    Abstract: A fuel cell catalyst containing platinum, zinc, and at least one of nickel and iron.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: September 20, 2011
    Assignees: Freeslate, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Martin Devenney, Peter Strasser, Alexander Gorer, Qun Fan, Konstantinos Chondroudis, Daniel M. Giaquinta, Ting He, Hiroyuki Oyanagi, Kenta Urata, Kazuhiko Iwasaki, Hiroichi Fukuda
  • Patent number: 7898208
    Abstract: A boost converter boosts a DC voltage of a DC power supply. An inverter converts the output voltage of the boost converter into an AC voltage. A control device that controls the boost converter reduces an output voltage instruction value of the boost converter when the rotation speed of the AC motor decreases and an absolute value of a variation rate of the rotation speed is not less than a predetermined value. The inverter is controlled in the control mode selected from a plurality of control modes including three modes of a sine wave PWM control mode, an overmodulation PWM control mode and a rectangular wave control mode. The control device of the boost converter reduces the output voltage instruction value of the boost converter only when the control mode of the inverter is the rectangular wave control mode or the overmodulation control mode.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: March 1, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kiyoe Ochiai, Masaki Okamura, Hiroyuki Oyanagi
  • Patent number: 7811965
    Abstract: A composition for use as a catalyst in, for example, a fuel cell, the composition comprising platinum, copper, and nickel, wherein the concentration of platinum therein is greater than 50 atomic percent and less than 80 atomic percent, and further wherein the sum of the concentrations of platinum, copper and nickel is greater than 95 atomic percent.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: October 12, 2010
    Assignees: Symyx Solutions, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Keith James Cendak, Alexander Gorer, Peter Strasser, Martin Devenney, Qun Fan, Konstantinos Chondroudis, Daniel M. Giaquinta, Kenta Urata, Hiroyuki Oyanagi
  • Patent number: 7700521
    Abstract: The present invention is directed to a composition for use as a catalyst in, for example, a fuel cell, the composition comprising platinum and copper, wherein the concentration of platinum is greater than 50 atomic percent and less than about 80 atomic percent, and further wherein the composition has a particle size which is less than 35 angstroms. The present invention is further directed to various methods for preparing such a composition.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: April 20, 2010
    Assignees: Symyx Solutions, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Daniel M. Giaquinta, Peter Strasser, Alexander Gorer, Martin Devenney, Hiroyuki Oyanagi, Kenta Urata, Hiroichi Fukuda, Keith James Cendak, Konstantinos Chondroudis
  • Patent number: 7662740
    Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: February 16, 2010
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
  • Patent number: 7635533
    Abstract: An improved metal alloy composition for a fuel cell catalyst containing platinum, manganese, and cobalt.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: December 22, 2009
    Assignees: Symyx Solutions, Inc., Honda Giken Kogyo Kabushike Kaisha
    Inventors: Qun Fan, Peter Strasser, Alexander Gorer, Martin Devenney, Konstantinos Chondroudis, Daniel M. Giaquinta, Ting He, Hiroyuki Oyanagi, Kenta Urata, Kazuhiko Iwasaki, Hiroichi Fukuda
  • Publication number: 20090309528
    Abstract: A plurality of current sensors are provided to correspond to a plurality of inverter circuits for driving a plurality of motor generators, respectively. Zero point adjustment of each current sensor is executed in a non-energized state recognized based on a stop of operation of the corresponding inverter circuit and when noise influence is determined to be small based on stops of operations of the other inverter circuits in the same casing. As a result, it is possible to avoid a risk of performing the zero point adjustment in a state in which an output of the current sensor is not exactly a value corresponding to zero current due to the noise influence from the other inverter circuits. In this way, it is possible to highly accurately execute the zero point adjustment of the current sensor for measuring motor driving current.
    Type: Application
    Filed: August 10, 2006
    Publication date: December 17, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideto Hanada, Hiroyuki Oyanagi
  • Patent number: 7608560
    Abstract: A fuel cell catalyst comprising platinum, titanium and tungsten. In one or more embodiments, the concentration of platinum is less than 60 atomic percent, and/or the concentration of titanium is at least 20 atomic percent, and/or the concentration of tungsten is at least 25 atomic percent.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: October 27, 2009
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Qun Fan, Peter Strasser, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Konstantinos Chondroudis, Keith James Cendak
  • Publication number: 20090108794
    Abstract: A boost converter boosts a DC voltage of a DC power supply. An inverter converts the output voltage of the boost converter into an AC voltage. An AC motor is driven by the output voltage of the inverter. A control device which controls the boost converter reduces an output voltage instruction value of the boost converter in the case where the rotation speed of the AC motor is decreased and an absolute value of a variation rate of the rotation speed is not less than a predetermined value. The inverter is controlled in the control mode selected from a plurality of control modes including three modes of a sine wave PWM control mode, an overmodulation PWM control mode and a rectangular wave control mode. The control device of the boost converter reduces the output voltage instruction value of the boost converter only in the case where the control mode of the inverter is the rectangular wave control mode or the overmodulation control mode.
    Type: Application
    Filed: November 1, 2006
    Publication date: April 30, 2009
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kiyoe Ochiai, Masaki Okamura, Hiroyuki Oyanagi