Patents by Inventor Hiroyuki Shinada

Hiroyuki Shinada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7411190
    Abstract: An inspection apparatus comprising an electron emitting unit for sequentially emitting an electron beam in the direction of an inspection area of a sample; a deceleration unit for drawing back the electron beam in the vicinity of the inspection area; an imaging unit for forming images of the drawing back electron beam on multiple different image forming conditions; an image detecting unit for capturing the electron beam that formed an image corresponding to each image forming condition; and an image processing unit for comparing the images on different image forming conditions with one another to detect a defect in the inspection area.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: August 12, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroshi Makino, Hisaya Murakoshi, Hiroyuki Shinada, Hideo Todokoro
  • Patent number: 7397031
    Abstract: An apparatus for inspecting a sample using a scanning electron microscope includes a sample stage, a first electron-optical system to scan an electron beam of a first beam current on the sample, a second electron-optical system to scan an electron beam of a second beam current smaller than the first beam current on the sample, a mechanism to move the sample stage, a detector provided in each of the first and second electron-optical systems to detect a secondary electron. The first electron-optical system is operable in a first mode and the second electron-optical system is operable in a second mode with higher resolution than that of the first mode. In the first mode, the sample is observed while the sample stage is moved continuously, and in the second mode, the sample is observed by detecting a secondary electron using the detector while the sample stage is held stationary.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: July 8, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Shinada, Atsuko Takafuji, Takanori Ninomiya, Yuko Sasaki, Mari Nozoe, Hisaya Murakoshi, Taku Ninomiya, Yuji Kasai, Hiroshi Makino, Yutaka Kaneko, Kenji Tanimoto
  • Publication number: 20080078933
    Abstract: A method and apparatus for assessing a height of a specimen includes an electron beam unit having an electron beam source, lenses, a table for setting a specimen and controllable in a height direction, and a detector, and a height detection system for detecting height of the specimen set on the table while the specimen is irradiated by an electron beam. The height detection system further includes an illumination system, a collection system, first and second detectors, a device configured to receive output signals from the first and second detectors while the specimen is irradiated by the electron beam and to generate a comparison signal from the output signals, wherein the comparison signal is responsive to the height of the specimen.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 3, 2008
    Inventors: Masahiro WATANABE, Takashi Hiroi, Maki Tanaka, Hiroyuki Shinada, Yasutsugu Usami
  • Patent number: 7348558
    Abstract: According to the invention, techniques for automatically adjusting for astigmatism in a charged particle beam apparatus. Embodiments according to the present invention can provide a charged particle beam apparatus and an automatic astigmatism adjustment methods capable of automatically correcting astigmatism and a focal point in a relatively short period of time by finding a plurality of astigmatism correction quantities and a focal point correction quantity in a single operation from a relatively small number of 2 dimensional images. Specific embodiments can perform such automatic focusing while minimizing damages inflicted on subject samples. Embodiments include, among others, a charged particle optical system for carrying out an inspection, a measurement and a fabrication with a relatively high degree of accuracy by using a charged particle beam.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: March 25, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Masahiro Watanabe, Hiroyuki Shinada, Atsuko Takafuji, Masami Iizuka, Yasuhiro Gunji, Kouichi Hayakawa, Masayoshi Takeda
  • Patent number: 7329889
    Abstract: An electron beam apparatus including a table which mounts a specimen and is movable in three dimensional directions, an electron beam optical system irradiating an electron beam onto a specimen and for detecting a secondary electron emanated from the specimen by the irradiation of the electron beam, and a surface height detection system for detecting height of the surface of the specimen mounted on the table. A focus control system controls a relative position between a focus position of the electron optical system and the table in accordance with information of the height, and an image processing system obtains an image from the detected secondary electron and processes the obtained image to detect a defect on the surface of the specimen.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: February 12, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Masahiro Watanabe, Takashi Hiroi, Maki Tanaka, Hiroyuki Shinada, Yasutsugu Usami
  • Publication number: 20070284526
    Abstract: In a circuit pattern inspection apparatus, while an electron beam is irradiated onto a surface of a substrate having a plurality of chips where circuit patterns have been formed, a signal produced from the irradiated substrate is detected so as to form an image, and then, the formed image is compared with another image in order to detect a defect on the circuit patterns. Before the electron beam is irradiated onto either the chip or the plurality of chips so as to acquire the image for an inspection purpose, an electron beam is previously irradiated onto the region to be irradiated, so that charging conditions of the substrate to be inspected are arbitrarily controlled.
    Type: Application
    Filed: April 25, 2007
    Publication date: December 13, 2007
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Yasuhiko Nara, Masaaki Nojiri, Kouichi Hayakawa, Hiroyuki Shinada, Yukio Hagita
  • Publication number: 20070215803
    Abstract: Problems encountered in the conventional inspection method and the conventional apparatus adopting the method are solved by the present invention using an electron beam by providing a novel inspection method and an inspection apparatus adopting the novel method which are capable of increasing the speed to scan a specimen such as a semiconductor wafer. The inspection novel method provided by the present invention comprises the steps of: generating an electron beam; converging the generated electron beam on a specimen by using an objective lens; scanning the specimen by using the converged electron beam; continuously moving the specimen during scanning; detecting charged particles emanating from the specimen at a location between the specimen and the objective lens and converting the detected charged particles into an electrical signal; storing picture information conveyed by the electrical signal; comparing a picture with another by using the stored picture information; and detecting a defect of the specimen.
    Type: Application
    Filed: May 11, 2007
    Publication date: September 20, 2007
    Inventors: Yuko Iwabuchi, Hideo Todokoro, Hiroyoshi Mori, Mitsugu Sato, Yasutsugu Usami, Mikio Ichihashi, Satoru Fukuhara, Hiroyuki Shinada, Yutaka Kaneko, Katsuya Sugiyama, Atsuko Takafuji, Hiroshi Toyama
  • Patent number: 7260256
    Abstract: The present invention relates to detection of defects with simple specification of the coordinates, in the inspection of an object having a plurality of patterns in which a portion having the two-dimensional repetition and portions having the repetition only in the X direction and in the Y direction are mixedly present. The cross comparison between a notice point and comparison points, for example which are repetitive pitches away from the notice point, is carried out, and only the portion having the difference which can be found out with any of the comparison points is extracted as a defect candidate, which results in that the portion having the two-dimensional repetition as well as the portion having the repetition only in the X direction or in the Y direction can be inspected.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: August 21, 2007
    Assignee: Renesas Technology Corporation
    Inventors: Takashi Hiroi, Maki Tanaka, Masahiro Watanabe, Asahiro Kuni, Hiroyuki Shinada, Mari Nozoe, Aritoshi Sugimoto, Chie Shishido
  • Publication number: 20070181808
    Abstract: While an image obtained by a general electron microscope is affected by the shape and material of an object specimen, an image obtained from mirror electrons is affected by the shape of an equipotential surface on which the mirror electrons are reflected, thereby the image interpretation is complicated. A mirror electron microscope of the present invention is provided with the following means for controlling a reflecting plane of the mirror electrons according to the structure of an object pattern to be measured or a concerned defect. 1) Means for controlling a potential difference between a specimen and an electron source equivalent to a height of a reflecting plane of a mirror electron beam according to a type, an operation condition of an electron source, and a type of a pattern on a specimen. 2) Means for controlling an energy distribution of an illuminating beam with an energy filter 9 disposed in an illuminating system.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 9, 2007
    Inventors: Hisaya Murakoshi, Hideo Todokoro, Hiroyuki Shinada, Masaki Hasegawa, Momoyo Enyama
  • Patent number: 7242015
    Abstract: An electron beam (area beam) having a fixed area is irradiated onto the surface of a semiconductor sample, and reflected electrons from the sample surface are imaged by the imaging lens, and images of a plurality of regions of the surface of the semiconductor sample are obtained and stored in the image storage unit, and the stored images of the plurality of regions are compared with each other, and the existence of a defect in the regions and the defect position are measured. By doing this, in an apparatus for testing a pattern defect of the same design, foreign substances, and residuals on a wafer in the manufacturing process of a semiconductor apparatus by an electron beam, speeding-up of the test can be realized.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 10, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Shinada, Yusuke Yajima, Hisaya Murakoshi, Masaki Hasegawa, Mari Nozoe, Atsuko Takafuji, Katsuya Sugiyama, Katsuhiro Kuroda, Kaoru Umemura, Yasutsugu Usami
  • Patent number: 7232996
    Abstract: Problems encountered in the conventional inspection method and the conventional apparatus adopting the method are solved by the present invention using an electron beam by providing a novel inspection method and an inspection apparatus adopting the novel method which are capable of increasing the speed to scan a specimen such as a semiconductor wafer. The inspection novel method provided by the present invention comprises the steps of: generating an electron beam; converging the generated electron beam on a specimen by using an objective lens; scanning the specimen by using the converged electron beam; continuously moving the specimen during scanning; detecting charged particles emanating from the specimen at a location between the specimen and the objective lens and converting the detected charged particles into an electrical signal; storing picture information conveyed by the electrical signal; comparing a picture with another by using the stored picture information; and detecting a defect of the specimen.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: June 19, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Yuko Iwabuchi, Hideo Todokoro, Hiroyoshi Mori, Mitsugu Sato, Yasutsugu Usami, Mikio Ichihashi, Satoru Fukuhara, Hiroyuki Shinada, Yutaka Kaneko, Katsuya Sugiyama, Atsuko Takafuji, Hiroshi Toyama
  • Patent number: 7223975
    Abstract: In a circuit pattern inspection apparatus, while an electron beam is irradiated onto a surface of a substrate having a plurality of chips where circuit patterns have been formed, a signal produced from the irradiated substrate is detected so as to form an image, and then, the formed image is compared with another image in order to detect a defect on the circuit patterns. Before the electron beam is irradiated onto either the chip or the plurality of chips so as to acquire the image for an inspection purpose, an electron beam is previously irradiated onto the region to be irradiated, so that charging conditions of the substrate to be inspected are arbitrarily controlled.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: May 29, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiko Nara, Masaaki Nojiri, Kouichi Hayakawa, Hiroyuki Shinada, Yukio Hagita
  • Publication number: 20060289751
    Abstract: According to the invention, techniques for automatically adjusting for astigmatism in a charged particle beam apparatus. Embodiments according to the present invention can provide a charged particle beam apparatus and an automatic astigmatism adjustment methods capable of automatically correcting astigmatism and a focal point in a relatively short period of time by finding a plurality of astigmatism correction quantities and a focal point correction quantity in a single operation from a relatively small number of 2 dimensional images. Specific embodiments can perform such automatic focusing while minimizing damages inflicted on subject samples. Embodiments include, among others, a charged particle optical system for carrying out an inspection, a measurement and a fabrication with a relatively high degree of accuracy by using a charged particle beam.
    Type: Application
    Filed: April 13, 2006
    Publication date: December 28, 2006
    Applicant: Hitachi, Ltd.
    Inventors: Masahiro Watanabe, Hiroyuki Shinada, Atsuko Takafuji, Masami lizuka, Yasuhiro Gunji, Kouichi Hayakawa, Masayoshi Takeda
  • Publication number: 20060249676
    Abstract: An electric field for decelerating an electron beam is formed on a surface of a sample semiconductor to be inspected, an electron beam having a specific area (a sheet electron beam) and containing a component having such an energy as not to reach the surface of the sample semiconductor is reflected in the very vicinity of the surface of the sample semiconductor by action of the electric field for deceleration and then forms an image through an imaging lens. Thus images of plural fields on the surface of the sample semiconductor are obtained and are stored in image memory units. By comparing the stored images of the plural fields with one another, the presence and position of a defect in the fields are determined.
    Type: Application
    Filed: January 23, 2006
    Publication date: November 9, 2006
    Inventors: Hiroyuki Shinada, Hisaya Murakoshi, Hideo Todokoro, Hiroshi Makino, Yoshihiro Anan
  • Publication number: 20060243908
    Abstract: An apparatus for inspecting a sample using a scanning electron microscope includes a sample stage, a first electron-optical system to scan an electron beam of a first beam current on the sample, a second electron-optical system to scan an electron beam of a second beam current smaller than the first beam current on the sample, a mechanism to move the sample stage, a detector provided in each of the first and second electron-optical systems to detect a secondary electron. The first electron-optical system is operable in a first mode and the second electron-optical system is operable in a second mode with higher resolution than that of the first mode. In the first mode, the sample is observed while the sample stage is moved continuously, and in the second mode, the sample is observed by detecting a secondary electron using the detector while the sample stage is held stationary.
    Type: Application
    Filed: June 15, 2006
    Publication date: November 2, 2006
    Inventors: Hiroyuki Shinada, Atsuko Takafuji, Takanori Ninomiya, Yuko Sasaki, Mari Nozoe, Hisaya Murakoshi, Taku Ninomiya, Yuji Kasai, Hiroshi Makino, Yutaka Kaneko, Kenji Tanimoto
  • Publication number: 20060231758
    Abstract: The present invention relates to an inspection apparatus comprising: an electron emitting unit for sequentially emitting an electron beam in the direction of the inspection area of a sample; a decelerating means for drawing back the electron beam in the vicinity of the inspection area; an imaging unit for forming images of the electron beam, which has been drawn back in the vicinity of the inspection area, on multiple different image forming conditions; an image detecting unit for capturing the electron beam that formed an image corresponding to each image forming condition and an image processing unit for comparing the images on different image forming conditions with one another to thereby detect a defect in the inspection area.
    Type: Application
    Filed: June 12, 2006
    Publication date: October 19, 2006
    Inventors: Hiroshi Makino, Hisaya Murakoshi, Hiroyuki Shinada, Hideo Todokoro
  • Patent number: 7122796
    Abstract: An inspection method and apparatus includes control of an acceleration voltage of an electron beam, irradiation of the electron beam to an object to be inspected mounted on a stage which is continuously moving at least in one direction, and detection of at least one of secondary electrons and reflected electrons emanated from the object in response to the irradiation. An image of the object is obtained from the detected electron by using positional information of the stage and inspection or measurement of the object is conducted using and obtained image. In the detection, an electric field in the vicinity of the object mounted on the stage is controlled so that at least one secondary electrons and the reflected electrons emanated from the object in response to the irradiation of the electron beam are decelerated.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: October 17, 2006
    Assignee: Hitachi Ltd.
    Inventors: Takashi Hiroi, Maki Tanaka, Masahiro Watanabe, Asahiro Kuni, Yukio Matsuyama, Yuji Takagi, Hiroyuki Shinada, Mari Nozoe, Aritoshi Sugimoto
  • Patent number: 7098455
    Abstract: A circuit pattern inspecting instrument includes an electron-optical system for irradiating an electron beam on a sample, an electron beam deflector, a detector for detecting secondary charged particles from the sample, and a mode setting unit for switching between a first mode and a second mode. An electron beam current is larger in the first mode than in the second mode, and an electron beam scanning speed is higher in the first mode than in the second mode. The circuit pattern inspecting instrument is configured so that first the sample is observed in the first mode, then a particular position on the sample is selected based on image data produced by an output of the detector in the first mode, and then the particular position on the sample is observed in the second mode.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 29, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Shinada, Atsuko Takafuji, Takanori Ninomiya, Yuko Sasaki, Mari Nozoe, Hisaya Murakoshi, Taku Ninomiya, Yuji Kasai, Hiroshi Makino, Yutaka Kaneko, Kenji Tanimoto
  • Publication number: 20060151699
    Abstract: Problems encountered in the conventional inspection method and the conventional apparatus adopting the method are solved by the present invention using an electron beam by providing a novel inspection method and an inspection apparatus adopting the novel method which are capable of increasing the speed to scan a specimen such as a semiconductor wafer. The inspection novel method provided by the present invention comprises the steps of: generating an electron beam; converging the generated electron beam on a specimen by using an objective lens; scanning the specimen by using the converged electron beam; continuously moving the specimen during scanning; detecting charged particles emanating from the specimen at a location between the specimen and the objective lens and converting the detected charged particles into an electrical signal; storing picture information conveyed by the electrical signal; comparing a picture with another by using the stored picture information; and detecting a defect of the specimen.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 13, 2006
    Inventors: Yuko Iwabuchi, Hideo Todokoro, Hiroyoshi Mori, Mitsugu Sato, Yasutsugu Usami, Mikio Ichihashi, Satoru Fukuhara, Hiroyuki Shinada, Yutaka Kaneko, Katsuya Sugiyama, Atsuko Takafuji, Hiroshi Toyama
  • Patent number: 7075076
    Abstract: The present invention relates to an inspection apparatus comprising: an electron emitting unit for sequentially emitting an electron beam in the direction of the inspection area of a sample; a decelerating means for drawing back the electron beam in the vicinity of the inspection area; an imaging unit for forming images of the electron beam, which has been drawn back in the vicinity of the inspection area, on multiple different image forming conditions; an image detecting unit for capturing the electron beam that formed an image corresponding to each image forming condition and an image processing unit for comparing the images on different image forming conditions with one another to thereby detect a defect in the inspection area.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: July 11, 2006
    Assignee: Hitachi High-Technologies Corp.
    Inventors: Hiroshi Makino, Hisaya Murakoshi, Hiroyuki Shinada, Hideo Todokoro