Patents by Inventor Hiroyuki Suto

Hiroyuki Suto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10892395
    Abstract: To provide a thermoelectric conversion material having an enhanced thermoelectromotive force and a production method thereof. A thermoelectric conversion material including a matrix and a barrier material, wherein the matrix contains Mg2Si1-xSnx (x is from 0.50 to 0.80) and an n-type dopant and the barrier material contains Mg2Si1-ySny (y is from 0 to 0.30), and a production method thereof. A thermoelectric conversion material and a production method thereof, in which the movement of minority carrier is blocked by a barrier material and the thermoelectromotive force is thereby enhanced, can be provided.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: January 12, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinsuke Hirono, Hiroyuki Suto
  • Patent number: 10853294
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: December 1, 2020
    Assignee: Toshiba Memory Corporation
    Inventor: Hiroyuki Suto
  • Patent number: 10662507
    Abstract: A method for producing a thermoelectric material, comprising: mixing an Sn powder and a powder containing a first dopant element to obtain a first mixed raw material, heating the first mixed raw material at a temperature allowing for mutual diffusion of Sn and the first dopant element to obtain a first aggregate, pulverizing the first aggregate to obtain a first powder, mixing an Mg powder, an Si powder, and the first powder to obtain a second mixed raw material, heating the second mixed raw material at a temperature allowing for mutual diffusion of Mg, Si, Sn and the first dopant element to obtain a second aggregate, pulverizing the second aggregate to obtain a second powder, and pressure-sintering the second powder, and wherein the first dopant element is one or more elements selected from Al, Ag, As, Bi, Cu, Sb, Zn, P, and B.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: May 26, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hidenari Yamamoto, Hiroyuki Suto
  • Publication number: 20190370204
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventor: Hiroyuki Suto
  • Patent number: 10394741
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: August 27, 2019
    Assignee: Toshiba Memory Corporation
    Inventor: Hiroyuki Suto
  • Publication number: 20190034371
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Application
    Filed: October 5, 2018
    Publication date: January 31, 2019
    Inventor: Hiroyuki Suto
  • Patent number: 10114785
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 30, 2018
    Assignee: Toshiba Memory Corporation
    Inventor: Hiroyuki Suto
  • Patent number: 10103312
    Abstract: A thermoelectric conversion device including an n-type thermoelectric converter, a p-type thermoelectric converter, a high temperature-side electrode with which one end of the n-type thermoelectric converter and one end of the p-type thermoelectric converter are put into contact, a first low temperature-side electrode in contact with another end of the n-type thermoelectric converter, and a second low temperature-side electrode in contact with another end of the p-type thermoelectric converter, wherein in the n-type thermoelectric converter, the side in contact with the high temperature-side electrode is composed of a carrier generation semiconductor containing Mg2Sn, and in the n-type thermoelectric converter, the side in contact with the first low temperature-side electrode is composed of a carrier transfer semiconductor containing Mg2Si1-xSnx, wherein 0.6?x?0.7, and a first n-type dopant.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: October 16, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Suto, Hidenari Yamamoto
  • Publication number: 20180287033
    Abstract: To provide a thermoelectric conversion material having an enhanced thermoelectromotive force and a production method thereof. A thermoelectric conversion material including a matrix and a barrier material, wherein the matrix contains Mg2Si1-xSnx (x is from 0.50 to 0.80) and an n-type dopant and the barrier material contains Mg2Si1-ySny (y is from 0 to 0.30), and a production method thereof. A thermoelectric conversion material and a production method thereof, in which the movement of minority carrier is blocked by a barrier material and the thermoelectromotive force is thereby enhanced, can be provided.
    Type: Application
    Filed: March 27, 2018
    Publication date: October 4, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinsuke HIRONO, Hiroyuki SUTO
  • Patent number: 9940192
    Abstract: According to one embodiment, a non-volatile semiconductor storage apparatus is configured to decide determination periods respectively corresponding to each of management blocks based on rewrite count information items and a temperature, and to perform a determination processing for each of management blocks for each determination period. The determination processing includes determining whether first data read from a block in the blocks is normal based on the number of errors that are occurred in the first data. The apparatus is configured to perform a rewrite processing of rewriting the first data to second data which is error-corrected when it is determined that the first data is not normal.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: April 10, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Fubito Igari, Hiroyuki Suto, Yasuyuki Ozawa
  • Publication number: 20180046593
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Application
    Filed: October 23, 2017
    Publication date: February 15, 2018
    Inventor: Hiroyuki Suto
  • Publication number: 20170331025
    Abstract: A thermoelectric conversion device including an n-type thermoelectric converter, a p-type thermoelectric converter, a high temperature-side electrode with which one end of the n-type thermoelectric converter and one end of the p-type thermoelectric converter are put into contact, a first low temperature-side electrode in contact with another end of the n-type thermoelectric converter, and a second low temperature-side electrode in contact with another end of the p-type thermoelectric converter, wherein in the n-type thermoelectric converter, the side in contact with the high temperature-side electrode is composed of a carrier generation semiconductor containing Mg2Sn, and in the n-type thermoelectric converter, the side in contact with the first low temperature-side electrode is composed of a carrier transfer semiconductor containing Mg2Si1-xSnx, wherein 0.6?x?0.7, and a first n-type dopant.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 16, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki SUTO, Hidenari YAMAMOTO
  • Patent number: 9811489
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: November 7, 2017
    Assignee: Toshiba Memory Corporation
    Inventor: Hiroyuki Suto
  • Publication number: 20170306445
    Abstract: A method for producing a thermoelectric material, comprising: mixing an Sn powder and a powder containing a first dopant element to obtain a first mixed raw material, heating the first mixed raw material at a temperature allowing for mutual diffusion of Sn and the first dopant element to obtain a first aggregate, pulverizing the first aggregate to obtain a first powder, mixing an Mg powder, an Si powder, and the first powder to obtain a second mixed raw material, heating the second mixed raw material at a temperature allowing for mutual diffusion of Mg, Si, Sn and the first dopant element to obtain a second aggregate, pulverizing the second aggregate to obtain a second powder, and pressure-sintering the second powder, and wherein the first dopant element is one or more elements selected from Al, Ag, As, Bi, Cu, Sb, Zn, P, and B.
    Type: Application
    Filed: February 22, 2017
    Publication date: October 26, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hidenari YAMAMOTO, Hiroyuki SUTO
  • Publication number: 20160267039
    Abstract: According to one embodiment, a storage device includes a memory, a controller, an interface unit, a switch, and a switch control unit. The memory stores data. The controller is configured to control writing of data to the memory and reading of data from the memory. The interface unit includes a first terminal, a second terminal, and a third terminal. The first terminal has an electrical status different between a case where the storage device and a first device are connected, and a case where the storage device and a second device are connected. Through the second terminal, voltage is applied by the first device to the storage device in the case where the storage device and the first device are connected, and a control signal is input from the second device to the storage device in the case where the storage device and the second device are connected. Through the third terminal, power is supplied to the storage device. The switch switches a connection status and a disconnection status.
    Type: Application
    Filed: August 12, 2015
    Publication date: September 15, 2016
    Inventor: Hiroyuki Suto
  • Patent number: 9306090
    Abstract: A composite particle including a core member including a rare earth ion which shows an upconversion effect and a retaining material which retains the rare earth ion, and a semiconductor member covering a part or all of the surface of the core member, wherein the retaining material includes a semiconductor material having a band gap greater than energy difference necessary for a second step excitation in the rare earth ion to occur, or an insulating material, and the semiconductor member includes a semiconductor material having a band gap smaller than the energy difference between a first excited state and a ground state of the rare earth ion.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 5, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroyuki Suto
  • Publication number: 20160071604
    Abstract: According to one embodiment, a semiconductor memory device includes: a first component including a controller which issues an instruction complying with a NAND interface; and a second component including a first NAND flash memory which is controlled by the instruction, the second component being removable from the first component.
    Type: Application
    Filed: March 9, 2015
    Publication date: March 10, 2016
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoichiro KURITA, Hiroyuki SUTO, Fuminori KIMURA
  • Publication number: 20150136229
    Abstract: A composite particle including a core member including a rare earth ion which shows an upconversion effect and a retaining material which retains the rare earth ion, and a semiconductor member covering a part or all of the surface of the core member, wherein the retaining material includes a semiconductor material having a band gap greater than energy difference necessary for a second step excitation in the rare earth ion to occur, or an insulating material, and the semiconductor member includes a semiconductor material having a band gap smaller than the energy difference between a first excited state and a ground state of the rare earth ion.
    Type: Application
    Filed: July 23, 2012
    Publication date: May 21, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroyuki Suto
  • Publication number: 20150052414
    Abstract: According to one embodiment, a non-volatile semiconductor storage apparatus is configured to decide determination periods respectively corresponding to each of management blocks based on rewrite count information items and a temperature, and to perform a determination processing for each of management blocks for each determination period. The determination processing includes determining whether first data read from a block in the blocks is normal based on the number of errors that are occurred in the first data. The apparatus is configured to perform a rewrite processing of rewriting the first data to second data which is error-corrected when it is determined that the first data is not normal.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Fubito IGARI, Hiroyuki Suto, Yasuyuki Ozawa
  • Patent number: 8918699
    Abstract: According to one embodiment, a non-volatile semiconductor storage apparatus is configured to decide determination periods respectively corresponding to each of management blocks based on rewrite count information items and a temperature, and to perform a determination processing for each of management blocks for each determination period. The determination processing includes determining whether first data read from a block in the blocks is normal based on the number of errors that are occurred in the first data. The apparatus is configured to perform a rewrite processing of rewriting the first data to second data which is error-corrected when it is determined that the first data is not normal.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: December 23, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fubito Igari, Hiroyuki Suto, Yasuyuki Ozawa