Patents by Inventor Hiroyuki Tanahashi

Hiroyuki Tanahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10161023
    Abstract: A hot stamping steel material, which secures good hydrogen embrittlement resistance even when the steel sheet after hot stamping is subjected to processing leading to remaining of stress, such as piercing and which is easily practicable, wherein the steel sheet has the chemical composition of: C: 0.18 to 0.26%; Si: more than 0.02% and not more than 0.05%; Mn: 1.0 to 1.5%; P: 0.03% or less; S: 0.02% or less; Al: 0.001 to 0.5%; N: 0.1% or less; O: 0.001 to 0.02%; Cr: 0 to 2.0%; Mo: 0 to 1.0%; V: 0 to 0.5%; W: 0 to 0.5%; Ni: 0 to 5.0%; B: 0 to 0.01%; Ti: 0 to 0.5%; Nb: 0 to 0.5%; Cu: 0 to 1.0%; and balance: Fe and impurities, in terms of % by mass, the concentration of a Mn-containing inclusion is not less than 0.010% by mass and less than 0.25% by mass, and the number ratio of a Mn oxide to the inclusion having a maximum length of 1.0 to 4.0 ?m is 10.0% or more.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 25, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Toshimasa Tomokiyo
  • Publication number: 20180363109
    Abstract: A hot stamping steel material, which secures good hydrogen embrittlement resistance even when the steel sheet after hot stamping is subjected to processing leading to remaining of stress, such as piercing and which is easily practicable, wherein the steel sheet has the chemical composition of: C: 0.18 to 0.26%; Si: more than 0.02% and not more than 0.05%; Mn: 1.0 to 1.5%; P: 0.03% or less; S: 0.02% or less; Al: 0.001 to 0.5%; N: 0.1% or less;O: 0.001 to 0.02%; Cr: 0 to 2.0%; Mo: 0 to 1.0%; V: 0 to 0.5%; W: 0 to 0.5%; Ni: 0 to 5.0%; B: 0 to 0.01%; Ti: 0 to 0.5%; Nb: 0 to 0.5%; Cu: 0 to 1.0%; and balance: Fe and impurities, in terms of % by mass, the concentration of a Mn-containing inclusion is not less than 0.010% by mass and less than 0.25% by mass, and the number ratio of a Mn oxide to the inclusion having a maximum length of 1.0 to 4.0 pm is 10.0% or more.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki TANAHASHI, Toshimasa TOMOKIYO
  • Patent number: 9903023
    Abstract: A hot rolled steel sheet consisting of, in mass %, C: 0.05% to 0.15%, Si: 0% to 0.2%, Al: 0.5% to 3.0%, Mn: 1.2% to 2.5%, P: 0.1% or less, S: 0.01% or less, N: 0.007% or less, Ti: 0.03% to 0.10%, Nb: 0.008% to 0.06%, V: 0% to 0.12%, one or more of Cr, Cu, Ni, and Mo: 0% to 2.0% in total, B: 0% to 0.005%, one or more of Ca, Mg, La, and Ce: 0% to 0.01% in total, total amount of Si and Al: 0.8×(Mn?1)% or more, total amount of Ti and Nb: 0.04% to 0.14%, and the balance: Fe and impurities. In a structure of steel, a total area ratio of martensite and retained austenite is 3% to 20%, an area ratio of ferrite is 50% to 96%, and an area ratio of pearlite is 3% or less. In a superficial layer part, the thickness in a sheet thickness direction of a region in which a network-like oxide is present is less than 0.5 ?m, and a maximum tensile strength is 720 MPa or more.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: February 27, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Naoki Maruyama, Tatsuo Yokoi, Hiroyuki Tanahashi, Atsushi Seto, Atsushi Itami
  • Patent number: 9617624
    Abstract: A steel sheet for a hot stamping member contains, as a chemical composition, 0.10 mass % to 0.35 mass % of C; 0.01 mass % to 1.0 mass % of Si; 0.3 mass % to 2.3 mass % of Mn; 0.01 mass % to 0.5 mass % of Al; limited to 0.03 mass % or less of P; limited to 0.02 mass % or less of S; limited to 0.1 mass % or less of N; and a balance consisting of Fe and unavoidable impurities, in which a standard deviation of diameters of iron carbides which are contained in a region from a surface to a ¼ thickness position of the steel sheet is less than or equal to 0.8 ?m.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 11, 2017
    Assignee: NIPPON STEEL SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Patent number: 9523134
    Abstract: This high strength hot-rolled steel sheet includes: in terms of percent by mass, C: 0.05 to 0.12%; Si: 0.8 to 1.2%; Mn: 1.6 to 2.2%; Al: 0.30 to 0.6%; P: 0.05% or less; S: 0.005% or less; and N: 0.01% or less, with the remainder being Fe and unavoidable impurities, wherein a microstructure includes specific ranges (in area %) of ferrite phases as well as martensite phases, and a maximum concentration of Al detected by a glow discharge emission spectroscopic analysis is in a range of 0.75 mass % or less in a region from a surface of the steel sheet to a thickness of 500 nm after being acid-pickled.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: December 20, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Shinya Saitoh, Masashi Fukuda, Hiroyuki Okada, Kunio Hayashi, Toshimasa Tomokiyo, Nobuhiro Fujita
  • Patent number: 9353424
    Abstract: A high strength steel sheet containing chemical components of, in mass %, C: 0.20 to 0.42%, Si: 0.06 to 0.5%, Mn: 0.2 to 2.2%, Cr: 0.1 to 2.5%, B: 0.0005 to 0.01%, O: 0.0020 to 0.020%, Al: 0.001 to 0.03%, Ti: 0.001 to 0.05%, N: 0.1% or less, P: 0.03% or less, S: 0.02% or less, and the balance: Fe and inevitable impurities. In steel, 5×103 pieces per mm2 or more to 1×105 pieces per mm2 or less of Mn oxides having a maximum length of 1 ?m or more to 5 ?m or less are present, and 1.7×102 pieces per mm2 or more to 5×103 pieces per mm2 or less of Mn—Si composite oxides having a short-axial length of 1 ?m or more and a longitudinal length of 10 ?m or less are present.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 31, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Toshimasa Tomokiyo
  • Publication number: 20160024610
    Abstract: A high strength steel sheet containing chemical components of, in mass %, C: 0.20 to 0.42%, Si: 0.06 to 0.5%, Mn: 0.2 to 2.2%, Cr: 0.1 to 2.5%, B: 0.0005 to 0.01%, O: 0.0020 to 0.020%, Al: 0.001 to 0.03%, Ti: 0.001 to 0.05%, N: 0.1% or less, P: 0.03% or less, S: 0.02% or less, and the balance: Fe and inevitable impurities. In steel, 5×103 pieces per mm2 or more to 1×105 pieces per mm2 or less of Mn oxides having a maximum length of 1 ?m or more to 5 ?m or less are present, and 1.7×102 pieces per mm2 or more to 5×103 pieces per mm2 or less of Mn—Si composite oxides having a short-axial length of 1 ?m or more and a longitudinal length of 10 ?m or less are present.
    Type: Application
    Filed: March 13, 2014
    Publication date: January 28, 2016
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki TANAHASHI, Toshimasa TOMOKIYO
  • Publication number: 20150218708
    Abstract: A hot rolled steel sheet consisting of, in mass %, C: 0.05% to 0.15%, Si: 0% to 0.2%, Al: 0.5% to 3.0%, Mn: 1.2% to 2.5%, P: 0.1% or less, S: 0.01% or less, N: 0.007% or less, Ti: 0.03% to 0.10%, Nb: 0.008% to 0.06%, V: 0% to 0.12%, one or more of Cr, Cu, Ni, and Mo: 0% to 2.0% in total, B: 0% to 0.005%, one or more of Ca, Mg, La, and Ce: 0% to 0.01% in total, total amount of Si and Al: 0.8×(Mn?1)% or more, total amount of Ti and Nb: 0.04% to 0.14%, and the balance: Fe and impurities. In a structure of steel, a total area ratio of martensite and retained austenite is 3% to 20%, an area ratio of ferrite is 50% to 96%, and an area ratio of pearlite is 3% or less. In a superficial layer part, the thickness in a sheet thickness direction of a region in which a network-like oxide is present is less than 0.5 ?m, and a maximum tensile strength is 720 MPa or more.
    Type: Application
    Filed: September 26, 2013
    Publication date: August 6, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Naoki Maruyama, Tatsuo Yokoi, Hiroyuki Tanahashi, Atsushi Seto, Atsushi Itami
  • Publication number: 20150024237
    Abstract: A hot stamping steel material, which secures good hydrogen embrittlement resistance even when the steel sheet after hot stamping is subjected to processing leading to remaining of stress, such as piercing and which is easily practicable, wherein the steel sheet has the chemical composition of: C: 0.18 to 0.26%; Si: more than 0.02% and not more than 0.05%; Mn: 1.0 to 1.5%; P: 0.03% or less; S: 0.02% or less; Al: 0.001 to 0.5%; N: 0.1% or less; O: 0.001 to 0.02%; Cr: 0 to 2.0%; Mo: 0 to 1.0%; V: 0 to 0.5%; W: 0 to 0.5%; Ni: 0 to 5.0%; B: 0 to 0.01%; Ti: 0 to 0.5%; Nb: 0 to 0.5%; Cu: 0 to 1.0%; and balance: Fe and impurities, in terms of % by mass, the concentration of a Mn-containing inclusion is not less than 0.010% by mass and less than 0.25% by mass, and the number ratio of a Mn oxide to the inclusion having a maximum length of 1.0 to 4.0 ?m is 10.0% or more.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 22, 2015
    Inventors: Hiroyuki Tanahashi, Toshimasa Tomokiyo
  • Publication number: 20140360631
    Abstract: This high strength hot-rolled steel sheet includes: in terms of percent by mass, C: 0.05 to 0.12%; Si: 0.8 to 1.2%; Mn: 1.6 to 2.2%; Al: 0.30 to 0.6%; P: 0.05% or less; S: 0.005% or less; and N: 0.01% or less, with the remainder being Fe and unavoidable impurities, wherein a microstructure includes specific ranges (in area %) of ferrite phases as well as martensite phases, and a maximum concentration of Al detected by a glow discharge emission spectroscopic analysis is in a range of 0.75 mass % or less in a region from a surface of the steel sheet to a thickness of 500 nm after being acid-pickled.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Inventors: Hiroyuki TANAHASHI, Shinya SAITOH, Masashi FUKUDA, Hiroyuki OKADA, Kunio HAYASHI, Toshimasa TOMOKIYO, Nobuhiro FUJITA
  • Patent number: 8852360
    Abstract: This high strength hot-rolled steel sheet includes: in terms of percent by mass, C: 0.05 to 0.12%; Si: 0.8 to 1.2%; Mn: 1.6 to 2.2%; Al: 0.30 to 0.6%; P: 0.05% or less; S: 0.005% or less; and N: 0.01% or less, with the remainder being Fe and unavoidable impurities, wherein a microstructure includes specific ranges (in area %) of ferrite phases as well as martensite phases, and a maximum concentration of Al detected by a glow discharge emission spectroscopic analysis is in a range of 0.75 mass % or less in a region from a surface of the steel sheet to a thickness of 500 nm after being acid-pickled.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: October 7, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Tanahashi, Shinya Saitoh, Masashi Fukuda, Hiroyuki Okada, Kunio Hayashi, Toshimasa Tomokiyo, Nobuhiro Fujita
  • Publication number: 20140044987
    Abstract: A steel sheet for a hot stamping member contains, as a chemical composition, 0.10 mass % to 0.35 mass % of C; 0.01 mass % to 1.0 mass % of Si; 0.3 mass % to 2.3 mass % of Mn; 0.01 mass % to 0.5 mass % of Al; limited to 0.03 mass % or less of P; limited to 0.02 mass % or less of S; limited to 0.1 mass % or less of N; and a balance consisting of Fe and unavoidable impurities, in which a standard deviation of diameters of iron carbides which are contained in a region from a surface to a ¼ thickness position of the steel sheet is less than or equal to 0.8 ?m.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 13, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Publication number: 20140004378
    Abstract: A steel sheet for obtaining a member which is excellent in fatigue characteristics equal to ordinary high strength steel sheet of the same strength even if applying the hot stamping process and a method of production of the same are provided. Steel sheet for a hot stamped member which includes composition which contains, by mass %, C: 0.15 to 0.35%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.3%, Al: 0.01 to 0.5%, and a balance of Fe and unavoidable impurities, and limit the impurities to P: 0.03% or less, S: 0.02% or less, and N: 0.1% or less, wherein that a standard error of Vicker's hardness at a position of 20 ?m from the steel sheet surface in the sheet thickness direction is 20 or less. This steel sheet is produced by a recrystallization-annealing step of a first stage of heating a cold rolled steel sheet, which is obtained by hot rolling steel containing the above composition and then cold rolling it, by an average heating rate of 8 to 25° C./sec from room temperature to 600 to 700° C.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 2, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Publication number: 20120279620
    Abstract: This high strength hot-rolled steel sheet includes: in terms of percent by mass, C: 0.05 to 0.12%; Si: 0.8 to 1.2%; Mn: 1.6 to 2.2%; Al: 0.30 to 0.6%; P: 0.05% or less; S: 0.005% or less; and N: 0.01% or less, with the remainder being Fe and unavoidable impurities, wherein a microstructure includes specific ranges (in area %) of ferrite phases as well as martensite phases, and a maximum concentration of Al detected by a glow discharge emission spectroscopic analysis is in a range of 0.75 mass % or less in a region from a surface of the steel sheet to a thickness of 500 nm after being acid-pickled.
    Type: Application
    Filed: November 16, 2010
    Publication date: November 8, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki Tanahashi, Shinya Saitoh, Masashi Fukuda, Hiroyuki Okada, Kunio Hayashi, Toshimasa Tomokiyo, Nobuhiro Fujita
  • Patent number: 5164336
    Abstract: A method of connecting a TAB tape to a semiconductor chip is disclosed which comprises the steps of preliminarily locating and fixing bumps at positions corresponding to a pattern of electrodes of the semiconductor chip to be connected; and bonding the bumps by thermocompression to the electrodes of the semiconductor chip and the leads of the TAB tape, respectively, so that each electrode of the semiconductor chip is electrically connected to the corresponding lead of the TAB tape through a corresponding one of the bumps. Also disclosed are a bump sheet and a bumped tape to be used in a method of connecting a TAB tape to a semiconductor chip.
    Type: Grant
    Filed: September 6, 1990
    Date of Patent: November 17, 1992
    Assignee: Nippon Steel Corporation
    Inventors: Yasuhide Ohno, Tadakatsu Maruyama, Hiroaki Otsuka, Hiroyuki Tanahashi
  • Patent number: 5114878
    Abstract: A method of bonding bumps to leads of a TAB tape comprises the steps of preparing a substrate which is provided with through-holes, each having a size which will not allow the bumps to pass therethrough, at positions corresponding to bonding positions of the leads of the TAB tape where the bumps are to be bonded; provisionally arranging the bumps at positions of the through-holes at one side of the substrate by reducing a pressure in another side of the substrate opposite to said one side thereof to such the bumps in said through-holes; disposing the substrate on which the bumps are provisionally arranged and said TAB tape in such a positional relationship that said bumps face to the bonding positions of the leads of said TAB tape; and bonding the provisionally arranged bumps to the leads at the bonding positions and an apparatus for arranging bumps in a positional relationship corresponding to bonding positions of leads of a TAB tape.
    Type: Grant
    Filed: March 13, 1991
    Date of Patent: May 19, 1992
    Assignee: Nippon Steel Corporation
    Inventors: Tadakatsu Maruyama, Yasuhide Ohno, Masashi Konda, Tosiharu Kikuchi, Yasuhiro Suzuki, Tomohiro Uno, Hiroaki Otsuka, Hiroyuki Tanahashi