Patents by Inventor Hiroyuki Tanikawa

Hiroyuki Tanikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230215497
    Abstract: In a semiconductor device 100, at least one of a first transistor and a second transistor that supply a second voltage in a step-down circuit stepping down a first voltage to the second voltage and outputting the second voltage from an output portion is configured such that the number of second contacts of a source electrode which is connected to a ground voltage or is supplied with the first voltage is larger than the number of first contacts connecting a diffusion layer and a first metal layer of a drain electrode connected to the output portion, and the number of second vias of the source electrode connected to the ground voltage or supplied with the first voltage is larger than the number of first vias connecting the first metal layer and a second metal layer of the drain electrode connected to the output portion.
    Type: Application
    Filed: January 4, 2023
    Publication date: July 6, 2023
    Applicant: LAPIS Technology Co., Ltd.
    Inventor: Hiroyuki Tanikawa
  • Patent number: 10845838
    Abstract: A reference voltage generation circuit including: a first diode including a first conductive area; a second diode including a second conductive area that is larger than the first conductive area; a generation section configured to generate a reference voltage using a voltage based on the first diode and a voltage based on the second diode; and a first capacitor connected between a node of dividing resistors and an output of the generation section, the dividing resistors being connected between the output of the generation section and the second diode.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: November 24, 2020
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Hiroyuki Tanikawa
  • Publication number: 20200310481
    Abstract: A reference voltage generation circuit including: a first diode including a first conductive area; a second diode including a second conductive area that is larger than the first conductive area; a generation section configured to generate a reference voltage using a voltage based on the first diode and a voltage based on the second diode; and a first capacitor connected between a node of dividing resistors and an output of the generation section, the dividing resistors being connected between the output of the generation section and the second diode.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 1, 2020
    Inventor: HIROYUKI TANIKAWA
  • Patent number: 10354735
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: July 16, 2019
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 10284184
    Abstract: A charge pump unit including a capacitor that accumulates a charge on an output node according to a first clock signal and a transfer gate that takes in and applies a voltage of an input node to the output node according to a second clock signal received at a control terminal is controlled in the following manner. If the ratio of the total time of periods in which the voltage of the output node is higher than a target voltage in a predetermined monitoring period is smaller than or equal to a first threshold, i.e., if the charge pump unit executes a boosting operation for a relatively long period, a pulse voltage value of the second clock signal is increased.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: May 7, 2019
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventor: Hiroyuki Tanikawa
  • Publication number: 20180374542
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 10115469
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: October 30, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 10096367
    Abstract: A power supply circuit and a semiconductor storage device that can achieve low power consumption of the power supply circuit that includes a charge pump circuit are provided. The semiconductor storage device includes a charge pump unit which generates and outputs a boosted voltage by boosting a source voltage, a voltage monitoring unit that performs comparison and determination on magnitudes of a divided voltage obtained by dividing the boosted voltage and a predetermined reference voltage, a charge pump control unit that causes the charge pump unit to operate when the divided voltage is equal to or lower than the reference voltage and causes the charge pump unit to stop when the divided voltage is higher than the reference voltage based on a result of the comparison and determination, and a voltage monitoring control unit that causes the voltage monitoring unit to intermittently stop.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 9, 2018
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventor: Hiroyuki Tanikawa
  • Publication number: 20180102175
    Abstract: A power supply circuit and a semiconductor storage device that can achieve low power consumption of the power supply circuit that includes a charge pump circuit are provided. The semiconductor storage device includes a charge pump unit which generates and outputs a boosted voltage by boosting a source voltage, a voltage monitoring unit that performs comparison and determination on magnitudes of a divided voltage obtained by dividing the boosted voltage and a predetermined reference voltage, a charge pump control unit that causes the charge pump unit to operate when the divided voltage is equal to or lower than the reference voltage and causes the charge pump unit to stop when the divided voltage is higher than the reference voltage based on a result of the comparison and determination, and a voltage monitoring control unit that causes the voltage monitoring unit to intermittently stop.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 12, 2018
    Applicant: LAPIS Semiconductor Co., Ltd.
    Inventor: Hiroyuki Tanikawa
  • Publication number: 20180047452
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 15, 2018
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 9812211
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: November 7, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Publication number: 20170317584
    Abstract: A charge pump unit including a capacitor that accumulates a charge on an output node according to a first clock signal and a transfer gate that takes in and applies a voltage of an input node to the output node according to a second clock signal received at a control terminal is controlled in the following manner. If the ratio of the total time of periods in which the voltage of the output node is higher than a target voltage in a predetermined monitoring period is smaller than or equal to a first threshold, i.e., if the charge pump unit executes a boosting operation for a relatively long period, a pulse voltage value of the second clock signal is increased.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 2, 2017
    Applicant: LAPIS Semiconductor Co., Ltd.
    Inventor: Hiroyuki TANIKAWA
  • Publication number: 20160336074
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 17, 2016
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 9412459
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: March 16, 2014
    Date of Patent: August 9, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 8854877
    Abstract: A nonvolatile semiconductor memory device and a method of reusing the same that allow a good use of the semiconductor device without degrading characteristics even when reused. The semiconductor memory device comprises information holding means for holding information that indicates an operation mode of said memory cell array, a decoder for generating, to said memory cell array, a selection signal to designate at least a read address of said memory cell array in accordance with an address signal that comprises plural bits; and mode setting means for fixing a logical value of at least one bit of said plural bits of said address signal in accordance with the information held by said information holding means, and supplying said address signal, on which fixing of the logical value is effected, to said decoder.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: October 7, 2014
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventors: Yuji Nagashima, Bunsho Kuramori, Hiroyuki Tanikawa
  • Publication number: 20140198577
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: March 16, 2014
    Publication date: July 17, 2014
    Applicants: HITACHI ULSI SYSTEMS CO., LTD., RENESAS ELECTRONICS CORPORATION
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 8698224
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: April 20, 2013
    Date of Patent: April 15, 2014
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 8565028
    Abstract: In a semiconductor nonvolatile memory device, nonvolatile memory cells are plurally arranged in a memory array portion. An output circuit outputs setting information selected from plural sets of setting information to generate reference currents with different current values. A reference current circuit generates a reference current with a current value according to the setting information outputted from the output circuit. An amplifier circuit compares a cell current outputted from a selected memory cell of the memory array portion with the reference current generated by the reference current circuit.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: October 22, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Hiroyuki Tanikawa
  • Patent number: 8547751
    Abstract: There is provided a non-volatile storage device including: a bit line that is connected to a non-volatile storage element and is applied with a voltage of magnitude corresponding to the logic value stored in the storage element; a charging section that charges the bit line to a voltage of equivalent magnitude to the reference voltage; a voltage generation section that is connected between the reference voltage line and the bit line, comprises a capacitance load for generating coupling charge when charging by the charging section has been performed, and employs the capacitance load to generate a voltage according to a difference between the magnitude of the voltage of the reference voltage line and the magnitude of the voltage of the bit line as a voltage expressing the comparison result; and a charge absorbing section for absorbing the coupling charge generated by the capacitance load.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 1, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventors: Hiroyuki Tanikawa, Bunsho Kuramori
  • Publication number: 20130235668
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: April 20, 2013
    Publication date: September 12, 2013
    Applicants: HITACHI ULSI SYSTEMS CO., LTD., RENESAS ELECTRONICS CORPORATION
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI