Patents by Inventor Hiroyuki Yasui

Hiroyuki Yasui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160230783
    Abstract: An airflow generation device of an embodiment includes a dielectric base, a first electrode, a second electrode, a third electrode, and a power supply. The dielectric base has a main surface. The first electrode is disposed on the main surface. The second electrode is disposed in the dielectric base with an interval from the first electrode in a first direction along the main surface. At least a part of the third electrode is disposed at a position in the dielectric base, between the first electrode and the second electrode in the first direction, and deeper than the second electrode. The power supply applies voltages for causing discharge to the first, second, and third electrodes.
    Type: Application
    Filed: December 28, 2015
    Publication date: August 11, 2016
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuta ONISHI, Motofumi TANAKA, Masahiro ASAYAMA, Naohiko SHIMURA, Hiroyuki YASUI, Kenichi YAMAZAKI, Toshiki OSAKO
  • Patent number: 9297260
    Abstract: An airflow control device 10 in an embodiment includes: a vortex shedding structure portion 20 discharging an airflow flowing on a surface in a flow direction as a vortex flow; and a first electrode 40 and a second electrode 41 disposed on a downstream side of the vortex shedding structure portion 20 via a dielectric. By applying a voltage between the first electrode 40 and the second electrode 41, flow of the airflow on the downstream side of the vortex shedding structure portion 20 is controlled.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: March 29, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Kunihiko Wada, Tamon Ozaki, Toshiki Osako, Masahiro Asayama, Yutaka Uchida
  • Patent number: 9090190
    Abstract: A metallic seat structure member with a surface roughened is placed within a forming die, into which synthetic resin is injected for molding. This provides a vehicle seat structure in which leg portions of a strength member made of synthetic resin are fixed to the roughened surface of the seat structure member.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: July 28, 2015
    Assignee: JOHNSON CONTROLS TECHNOLOGY COMPANY
    Inventors: Hiroyuki Yasui, Atsushi Sano, Atsushi Nakajima, Antoine Kmeid
  • Publication number: 20150110651
    Abstract: A voltage application device of an embodiment applies a voltage between a first and second electrode disposed separately from each other in an airflow generation device, which is disposed on a rotation blade of a rotation apparatus, in which a rotation shaft of the rotation blade is held rotatably by a holding part. In the voltage application device of the embodiment, a voltage output unit outputs a voltage. Then, a sliding type transmission unit having electrodes disposed respectively on the, rotation blade side and the holding part side of the rotation shaft transmits a voltage outputted from the voltage output unit from the holding part side to the rotation blade side. Then, a transformation unit disposed on the rotation blade side increases the voltage transmitted by the sliding type transmission unit and outputs the voltage to the airflow generation device.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 23, 2015
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Shohei Goshima, Hiroyuki Yasui, Amane Majima, Toshiki Osaka
  • Patent number: 8937799
    Abstract: A voltage application device of an embodiment applies a voltage between a first and second electrode disposed separately from each other in an airflow generation device, which is disposed on a rotation blade of a rotation apparatus, in which a rotation shaft of the rotation blade is held rotatably by a holding part. In the voltage application device of the embodiment, a voltage output unit outputs a voltage. Then, a sliding type transmission unit having electrodes disposed respectively on the rotation blade side and the holding part side of the rotation shaft transmits a voltage outputted from the voltage output unit from the holding part side to the rotation blade side. Then, a transformation unit disposed on the rotation blade side increases the voltage transmitted by the sliding type transmission unit and outputs the voltage to the airflow generation device.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: January 20, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Shohei Goshima, Hiroyuki Yasui, Amane Majima, Toshiki Osako
  • Patent number: 8890347
    Abstract: A wind power generation system 10 of an embodiment includes a rotor 40 having a hub 41 and blades 42, a nacelle 31 pivotally supporting the rotor 40, a tower 30 supporting the nacelle 31, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, and a discharge power supply 65 capable of applying a voltage between the electrodes of the airflow generation device 60. Further, the system includes a measurement device detecting information related to at least one of output in the wind power generation system 10, torque in the rotor 40 and a rotation speed of the blades 42, and a control unit 110 controlling the discharge power supply 65 based on an output from the measurement device.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: November 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Kunihiko Wada, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Yutaka Ishiwata, Susumu Kinoshita, Tamon Ozaki, Sueyoshi Mizuno, Shinichi Noda, Toshiki Osako, Toshimasa Yamada
  • Patent number: 8674537
    Abstract: A wind power generation system 10 of an embodiment includes a rotor 40 having blades 42, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, a discharge power supply 65 applying a voltage between the electrodes of the airflow generation device 60, and a control unit 110 controlling the discharge power supply 65. The control unit 110 controls the voltage to perform pulse modulation so that the value of a relational expression fC/U is 0.1 or larger and 9 or smaller where f is a pulse modulation frequency of the voltage, C is a chord length of the blades 42, and U is a relative velocity combining a peripheral velocity of the blades 42 and a wind velocity, so as to generate plasma induced flow.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Kunihiko Wada, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Yutaka Ishiwata, Susumu Kinoshita, Tamon Ozaki, Sueyoshi Mizuno, Shinichi Noda
  • Patent number: 8559158
    Abstract: In one embodiment, an air current generating apparatus includes: a dielectric substrate exposed to gas: a first electrode disposed inside the dielectric substrate; a second electrode disposed near a surface of the dielectric so as to correspond the first electrode and having a sharp shape; and a power source applying a voltage between the first and second electrodes and plasmatizing part of the gas to generate an air current.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: October 15, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motofumi Tanaka, Kazuo Hayashi, Naohiko Shimura, Hiroyuki Yasui, Masahiro Asayama, Yutaka Ishiwata, Masahiro Katayama
  • Patent number: 8456790
    Abstract: In one embodiment, a wind-power generating system 10 includes: a lightning protecting device including a receptor 70 provided on a blade surface and a lightning conductor 73 grounding the receptor 70; an airflow generating device 60 provided on the blade surface and including first and second electrodes 61, 62 separated via a dielectric 63; a discharge power source 65 including switches 90, 91 able to connect the first and second electrodes 61, 62 to output terminals 84, 85 respectively and a switch 92 able to connect the first or second electrode 61, 62 to a grounding conductor 100; and a thundercloud detecting device detecting information regarding thundercloud approach. When the information regarding the thundercloud approach is detected, the second electrode 62 is connected to the grounding conductor 100 and the first and second electrodes 61, 62 are disconnected from the output terminals 84, 85.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: June 4, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motofumi Tanaka, Naohiko Shimura, Shohei Goshima, Hisashi Matsuda, Hiroyuki Yasui, Toshiki Osako, Masahiro Asayama
  • Patent number: 8400751
    Abstract: In one embodiment, an air current generating apparatus includes: a dielectric substrate exposed to gas: a first electrode disposed inside the dielectric substrate; a second electrode disposed near a surface of the dielectric so as to correspond the first electrode and having a sharp shape; and a power source applying a voltage between the first and second electrodes and plasmatizing part of the gas to generate an air current.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: March 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motofumi Tanaka, Kazuo Hayashi, Naohiko Shimura, Hiroyuki Yasui, Masahiro Asayama, Yutaka Ishiwata, Masahiro Katayama
  • Publication number: 20120291874
    Abstract: An airflow control device 10 in an embodiment includes: a vortex shedding structure portion 20 discharging an airflow flowing on a surface in a flow direction as a vortex flow; and a first electrode 40 and a second electrode 41 disposed on a downstream side of the vortex shedding structure portion 20 via a dielectric. By applying a voltage between the first electrode 40 and the second electrode 41, flow of the airflow on the downstream side of the vortex shedding structure portion 20 is controlled.
    Type: Application
    Filed: March 13, 2012
    Publication date: November 22, 2012
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Kunihiko Wada, Tamon Ozaki, Toshiki Osako, Masahiro Asayama, Yutaka Uchida
  • Publication number: 20120287550
    Abstract: A voltage application device of an embodiment applies a voltage between a first and second electrode disposed separately from each other in an airflow generation device, which is disposed on a rotation blade of a rotation apparatus, in which a rotation shaft of the rotation blade is held rotatably by a holding part. In the voltage application device of the embodiment, a voltage output unit outputs a voltage. Then, a sliding type transmission unit having electrodes disposed respectively on the rotation blade side and the holding part side of the rotation shaft transmits a voltage outputted from the voltage output unit from the holding part side to the rotation blade side. Then, a transformation unit disposed on the rotation blade side increases the voltage transmitted by the sliding type transmission unit and outputs the voltage to the airflow generation device.
    Type: Application
    Filed: March 15, 2012
    Publication date: November 15, 2012
    Inventors: Motofumi TANAKA, Hisashi Matsuda, Shohei Goshima, Hiroyuki Yasui, Amane Majima, Toshiki Osako
  • Publication number: 20120287549
    Abstract: In one embodiment, a wind-power generating system 10 includes: a lightning protecting device including a receptor 70 provided on a blade surface and a lightning conductor 73 grounding the receptor 70; an airflow generating device 60 provided on the blade surface and including first and second electrodes 61, 62 separated via a dielectric 63; a discharge power source 65 including switches 90, 91 able to connect the first and second electrodes 61, 62 to output terminals 84, 85 respectively and a switch 92 able to connect the first or second electrode 61, 62 to a grounding conductor 100; and a thundercloud detecting device detecting information regarding thundercloud approach. When the information regarding the thundercloud approach is detected, the second electrode 62 is connected to the grounding conductor 100 and the first and second electrodes 61, 62 are disconnected from the output terminals 84, 85.
    Type: Application
    Filed: March 15, 2012
    Publication date: November 15, 2012
    Inventors: Motofumi Tanaka, Naohiko Shimura, Shohei Goshima, Hisashi Matsuda, Hiroyuki Yasui, Toshiki Osako, Masahiro Asayama
  • Publication number: 20120280500
    Abstract: A wind power generation system 10 of an embodiment includes a rotor 40 having blades 42, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, a discharge power supply 65 applying a voltage between the electrodes of the airflow generation device 60, and a control unit 110 controlling the discharge power supply 65. The control unit 110 controls the voltage to perform pulse modulation so that the value of a relational expression fC/U is 0.1 or larger and 9 or smaller where f is a pulse modulation frequency of the voltage, C is a chord length of the blades 42, and U is a relative velocity combining a peripheral velocity of the blades 42 and a wind velocity, so as to generate plasma induced flow.
    Type: Application
    Filed: March 13, 2012
    Publication date: November 8, 2012
    Inventors: Motofumi TANAKA, Hisashi Matsuda, Kunihiko Wada, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Yutaka Ishiwata, Susumu Kinoshita, Tamon Ozaki, Sueyoshi Mizuno, Shinichi Noda
  • Publication number: 20120280501
    Abstract: A wind power generation system 10 of an embodiment includes a rotor 40 having a hub 41 and blades 42, a nacelle 31 pivotally supporting the rotor 40, a tower 30 supporting the nacelle 31, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, and a discharge power supply 65 capable of applying a voltage between the electrodes of the airflow generation device 60. Further, the system includes a measurement device detecting information related to at least one of output in the wind power generation system 10, torque in the rotor 40 and a rotation speed of the blades 42, and a control unit 110 controlling the discharge power supply 65 based on an output from the measurement device.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Kunihiko Wada, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Yutaka Ishiwata, Susumu Kinoshita, Tamon Ozaki, Sueyoshi Mizuno, Shinichi Noda, Toshiki Osako, Toshimasa Yamada
  • Publication number: 20120267892
    Abstract: According to the present invention, there is provided a wind power generating system, having a plurality of plasma airflow generating units, each including a first electrode and a second electrode arranged being separated from the first electrode with a dielectric film and generating plasma airflow owing to dielectric barrier discharge when voltage is applied between the first electrode and the second electrode; and at least one plasma power source which supplies voltage to the plasma airflow generating units, wherein the plasma airflow generating units are arranged at a blade of the wind power generating system and are supplied with voltage as being separated into a plurality of lines separately for each of the lines.
    Type: Application
    Filed: February 28, 2012
    Publication date: October 25, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hisashi Matsuda, Motofumi Tanaka, Hiroyuki Yasui, Shohei Goshima, Kunihiko Wada, Tamon Ozaki, Toshiki Osako
  • Publication number: 20120223565
    Abstract: A metallic seat structure member with a surface roughened is placed within a forming die, into which synthetic resin is injected for molding. This provides a vehicle seat structure in which leg portions of a strength member made of synthetic resin are fixed to the roughened surface of the seat structure member.
    Type: Application
    Filed: September 6, 2010
    Publication date: September 6, 2012
    Inventors: Hiroyuki Yasui, Atsushi Sano, Atsushi Nakajima, Antoine Kmeid
  • Publication number: 20110198312
    Abstract: In one embodiment, an air current generating apparatus includes: a dielectric substrate exposed to gas: a first electrode disposed inside the dielectric substrate; a second electrode disposed near a surface of the dielectric so as to correspond the first electrode and having a sharp shape; and a power source applying a voltage between the first and second electrodes and plasmatizing part of the gas to generate an air current.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 18, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Motofumi TANAKA, Kazuo Hayashi, Naohiko Shimura, Hiroyuki Yasui, Masahiro Asayama, Yutaka Ishiwata, Masahiro Katayama
  • Publication number: 20110015433
    Abstract: Disclosed is a process for the simple preparation of trifluoromethionine, its analogs trifluoromethylcysteine, fluoroalkylhomocysteines, and fluoroalkylcysteines, and derivatives of them. These compounds are drug-candidate compounds or raw materials of drug-candidate compounds. Specifically, trifluoromethionine, trifluoromethylcysteine, a fluoroalkylhomocysteine, or a fluoroalkylcysteine is simply and conveniently prepared directly without passing through homocysteine or cysteine by adding metallic sodium to an optically active or racemic homocystine or cystine in liquid ammonia and further adding a fluoroalkyl iodide thereto under Birch reduction conditions.
    Type: Application
    Filed: June 22, 2010
    Publication date: January 20, 2011
    Applicant: NATIONAL UNIVERSITY CORPORATION NAGOYA INSTITUTE OF TECHNOLOGY
    Inventors: Norio SHIBATA, Hiroyuki YASUI
  • Patent number: 7804965
    Abstract: A microphone system including a main unit for controlling the entire system and microphones having cascade connections from the main unit assuming the main-unit side upstream and the opposite side downstream. The microphone includes communication control means for controlling data transmitted between the main unit and microphones, sound input means for converting collected sound into a digital signal, echo cancellation means for eliminating an echo component in the sound signal, and sound-information generation means for updating the sound information by adding the sound signal of the self-microphone to the sound information of the downstream microphones and upstream transmitting the up data including the updated sound information. The microphone transmits the down data transmitted from the main unit to the down-most microphone in sequence in accordance with the cascade connection and transmits the up data from the down-most microphone to the main unit in reverse sequence.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: September 28, 2010
    Assignee: Sony Corporation
    Inventors: Takayoshi Kawaguchi, Hiroyuki Yasui