Patents by Inventor Hisaaki Gyoten

Hisaaki Gyoten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6818339
    Abstract: The present specification discloses a polymer electrolyte fuel cell characterized in that each of the cathode and the anode comprises catalyst particles, a hydrogen ion-conductive polymer electrode, a conductive porous base material and a water repellent agent, and water repellency of at least one of the cathode and the anode varies in a direction of thickness or in a plane direction. As such, by varying the degree of the water repellency of the cathode and the anode on the basis of a position, an excellent polymer electrolyte fuel cell having a high discharge characteristic or more specifically a high current-voltage characteristic in a high current density range.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: November 16, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasushi Sugawara, Hisaaki Gyoten, Makoto Uchida, Eiichi Yasumoto, Teruhisa Kanbara, Junji Morita, Yoshihiro Hori, Akihiko Yoshida, Hidenobu Wakita, Hiroki Kusakabe, Masato Hosaka, Osamu Sakai
  • Publication number: 20040197633
    Abstract: The present invention relates to a polymer electrolyte fuel cell comprising: an electrolyte membrane-electrode assembly including an anode, a cathode and a polymer electrolyte membrane interposed therebetween; an anode-side conductive separator plate having a gas flow channel for supplying a fuel gas to the anode; and a cathode-side conductive separator plate having a gas flow channel for supplying an oxidant gas to the cathode.
    Type: Application
    Filed: August 27, 2002
    Publication date: October 7, 2004
    Inventors: Masao Yamamoto, Junji Niikura, Nobuhiro Hase, Kazuhito Hatoh, Hisaaki Gyoten, Hideo Ohara, Teruhisa Kanbara, Tatsuo Yamazaki, Masaya Suguo
  • Publication number: 20040191600
    Abstract: A fuel cell component includes an electrolyte membrane and insert members disposed within the electrolyte membrane. The insert members are arranged to provide compression resistance of the assembly of the insert members and electrolyte membrane. Creep resistance of the assembly of the insert members and electrolyte membrane is greater than a creep resistance of the electrolyte membrane alone.
    Type: Application
    Filed: October 9, 2003
    Publication date: September 30, 2004
    Inventors: Hisaaki Gyoten, Kazuhito Hatoh, Shinya Kosako
  • Publication number: 20040170885
    Abstract: A polymer electrolyte fuel cell exhibits an excellent performance with an efficient electrode reaction: by providing a layer containing an electroconductive fine particle between the catalytic reaction layer and the gas diffusion layer in the electrodes; by providing a hydrogen ion diffusion layer on at least either surface of the catalyst particle or the carrier, which carries the catalyst particle in the catalytic reaction layer; or by constituting the catalytic reaction layer with at least a catalyst comprising a hydrophilic carbon material with catalyst particles carried thereon and a water repellent carbon material.
    Type: Application
    Filed: March 10, 2004
    Publication date: September 2, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisaaki Gyoten, Eiichi Yasumoto, Kazuhito Hatoh, Makoto Uchida, Yasushi Sugawara, Teruhisa Kanbara, Junji Morita, Hideo Ohara, Kazufumi Nishida, Osamu Sakai, Yukiyoshi Ono, Yasuo Takebe
  • Publication number: 20040157103
    Abstract: A fuel cell includes a stack of unit cells, each including: a hydrogen-ion conductive polymer electrolyte membrane; an anode and a cathode sandwiching the polymer electrolyte membrane; an anode-side conductive separator plate having a gas flow path for supplying and discharging a fuel gas to and from the anode; and a cathode-side conductive separator plate having a gas flow path for supplying and discharging an oxidant gas to and from the cathode. At least one of the anode-side and cathode-side separator plates has, in one face thereof, a plurality of independent gas flow channels, which constitute the gas flow path. When the fuel cell is operated at low load, the fuel gas or the oxidant gas is supplied to one or more of the plurality of independent gas flow channels, so that the fuel cell is capable of securing sufficient gas velocity.
    Type: Application
    Filed: January 7, 2004
    Publication date: August 12, 2004
    Inventors: Shinsuke Takeguchi, Kazuhito Hatoh, Hideo Ohara, Hisaaki Gyoten
  • Publication number: 20040131919
    Abstract: In a polymer electrolyte fuel cell including a hydrogen ion conductive polymer electrolyte membrane; a pair of electrodes composed of catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers; a conductive separator plate having a gas flow channel for supplying a fuel gas to one of the electrodes; and a conductive separator plate having a gas flow channel for supplying an oxidant gas to the other electrode, in order to bring a hydrogen ion conductive polymer electrolyte and a catalyst metal of the catalyst layers containing the hydrogen ion conductive polymer electrolyte and conductive carbon particles carrying the catalyst metal sufficiently and uniformly into contact with each other, the polymer electrolyte is provided in pores of an agglomerate structure of the conductive carbon particles. Consequently, the reaction area inside the electrodes is increased, and higher performance is exhibited.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 8, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Eiichi Yasumoto, Akihiko Yoshida, Makoto Uchida, Hisaaki Gyoten, Kazuhito Hatoh, Yasushi Sugawara, Junji Morita, Teruhisa Kanbara, Yasuo Takebe, Masato Hosaka, Junji Niikura
  • Patent number: 6746793
    Abstract: The polymer electrolyte fuel cell of the present invention exhibits an excellent performance with an efficient electrode reaction; by providing a layer comprising an electroconductive fine particle between the catalytic reaction layer and the gas diffusion layer in the electrodes; by providing a hydrogen ion diffusion layer on at least either surface of the catalyst particle or the carrier, which carries the catalyst particle in the catalytic reaction layer; or by constituting the catalytic reaction layer with at least a catalyst comprising a hydrophilic carbon material with catalyst particles carried thereon and a water repellent carbon material.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: June 8, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisaaki Gyoten, Eiichi Yasumoto, Kazuhito Hatoh, Makoto Uchida, Yasushi Sugawara, Teruhisa Kanbara, Junji Morita, Hideo Ohara, Kazufumi Nishida, Osamu Sakai, Yukiyoshi Ono, Yasuo Takebe
  • Patent number: 6689504
    Abstract: The present invention provides a fuel cell stack including a plurality of unit cells laid one upon another. Each of the unit cells includes an electrolyte, a pair of electrodes that are arranged across the electrolyte and respectively have a catalytic reaction layer, and a separator having means for feeding a supply of gaseous fuel to one of the electrodes and a supply of oxidant gas to the other of the electrodes. The separator is a laminate including a gas-tight conductive plate A and another conductive plate B having at least one slit, which continuously meanders from one end to another end of the conductive plate B. The technique of the present invention gives a compact fuel cell stack assembled by a simple process.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 10, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshihiro Matsumoto, Kazuhito Hatoh, Hisaaki Gyoten, Hideo Ohara, Kazufumi Nishida, Teruhisa Kanbara
  • Patent number: 6667268
    Abstract: A polymer electrolyte fuel cell which includes a pair of electrodes, a polymer electrolyte membrane interposed between the pair of the electrodes, a first conductive separator having a channel for supplying an oxidant gas to one of the electrodes therethrough, and a second conductive separator having a channel for supplying a fuel gas to the other of the electrodes therethrough, wherein at least one of the electrodes includes a porous catalyst layer formed on the surface of the polymer electrolyte membrane, or formed on the surface of a porous conductive base.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: December 23, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasushi Sugawara, Hisaaki Gyoten, Makoto Uchida, Eiichi Yasumoto, Teruhisa Kanbara, Junji Morita
  • Patent number: 6660419
    Abstract: Disclosed is a polymer electrolyte fuel cell having an improved separator plate. The fuel cell comprises a solid polymer electrolyte membrane; an anode and a cathode sandwiching the solid polymer electrolyte membrane therebetween; an anode-side conductive separator plate having a gas flow path for supplying a fuel gas to the anode; and a cathode-side conductive separator plate having a gas flow path for supplying an oxidant gas to the cathode, wherein each of the anode-side and cathode-side conductive separator plates is composed of a metal and a conductive coat which has resistance to oxidation and covers a surface of the metal. Alternatively, the above-mentioned separator plates are formed of a metal and a coat having resistance to oxidation and have roughened surfaces with recessions and protrusions, and portions of a top surface of the protruding portions, which lack the coat, are electrically connected to an electrode.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: December 9, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazufumi Nishida, Eiichi Yasumoto, Hisaaki Gyoten, Kazuhito Hatoh, Makoto Uchida, Hideo Ohara, Yasushi Sugawara, Teruhisa Kanbara, Toshihiro Matsumoto, Junji Niikura
  • Patent number: 6660424
    Abstract: The specification discloses a fuel cell comprising stacked unit cells, each of the unit cells including a pair of electrodes having a catalytic reaction layer and a gas diffusion layer, an electrolyte layer disposed between the pair of electrodes, a separator having a flow path for supplying a fuel gas to one electrode and a separator having a flow path for supplying an oxidant gas to the other electrode, the separators being placed on the outer side of the electrodes and the unit cells being stacked with the separators placed therebetween, wherein at least the catalytic reaction layer, the gas diffusion layer or the flow path has water-repelling properties. Thereby, a fuel cell having a superior cell performance is obtained.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: December 9, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisaaki Gyoten, Eiichi Yasumoto, Makoto Uchida, Yasushi Sugawara, Kazufumi Nishida, Kazuhito Hatoh, Yukiyoshi Ono, Hideo Ohara, Junji Morita, Yasuo Takebe, Teruhisa Kanbara, Osamu Sakai
  • Patent number: 6638655
    Abstract: The invention provides a fuel cell system that is free from troubles due to contaminant ions by controlling the concentration of contaminant ions in cooling water. The fuel cell system comprises a fuel cell stack and a means for controlling the cell temperature by circulating a liquid coolant in the fuel cell stack or bringing it in contact with the fuel cell stack, the fuel cell stack comprising a plurality of unit cells that are laid one upon another, each of the unit cells comprising a hydrogen ion-conductive electrolyte membrane, a pair of gas diffusion electrodes which sandwich the electrolyte membrane, an anode-side conductive separator plate having a gas flow path for supplying a fuel gas to one of the electrodes, and a cathode-side conductive separator plate having a gas flow path for supplying an oxidant gas to the other of the electrodes, wherein a material adsorbing or absorbing ions is provided on a portion of the fuel cell system to come in contact with the liquid coolant.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: October 28, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisaaki Gyoten, Osamu Sakai, Kazuhito Hatoh, Junji Niikura, Makoto Uchida
  • Publication number: 20030175579
    Abstract: To improve the performance of a catalyst layer of a fuel cell electrode, the weight ratio of a hydrogen ion conductive polymer electrolyte and electroconductive carbon particles in the catalyst layer is controlled to satisfy the formula (1): Y=a·logX−b+c, where log represents natural logarithm, X represents the specific surface area of the electroconductive carbon particles (m2/g), Y=(the weight of the hydrogen ion conductive polymer electrolyte)/(the weight of the electroconductive carbon particles), a=0.216, c=±0.300, b=0.421 at an air electrode and b=0.221 at an fuel electrode.
    Type: Application
    Filed: February 14, 2003
    Publication date: September 18, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Makoto Uchida, Eiichi Yasumoto, Akihiko Yoshida, Yasushi Sugawara, Osamu Sakai, Kazuhito Hatoh, Junji Niikura, Masato Hosaka, Teruhisa Kanbara, Takeshi Yonamine, Yasuo Takebe, Yoshihiro Hori, Hisaaki Gyoten, Hiroki Kusakabe
  • Publication number: 20030143454
    Abstract: Methods are provided for easily obtaining a high performance electrode without using an organic solvent for making an ink of an electrode catalyst or a surfactant for making an ink of a water repellent carbon material. The methods of manufacturing an electrode for a polymer electrolyte fuel cell comprise (a) a step of adhering a polymer electrolyte or a water repellent material to fine electrically conductive particles, and granulating the electrically conductive particles to obtain multinary granules, and (b) a step of depositing the multinary granules in layer form to obtain a catalyst layer or a water repellent layer of an electrode. Apparatus for manufacturing the electrodes, as well as polymer electrolyte fuel cells using the electrodes are also provided.
    Type: Application
    Filed: December 23, 2002
    Publication date: July 31, 2003
    Inventors: Kazuhito Hatoh, Hisaaki Gyoten, Toshihiro Matsumoto, Hiroki Kusakabe, Yoshiki Nagao
  • Publication number: 20030134173
    Abstract: A polymer electrolyte fuel cell stack that includes a cell laminate having a plurality of unit cells, which are laid one upon another and each of which includes a polymer electrolyte membrane, a pair of electrodes arranged across the polymer electrolyte membrane and having respective catalytic reaction layers, a separator having means for feeding a supply of fuel gas containing hydrogen gas to one of the electrodes, another separator having means for feeding a supply of oxidant gas to the other of the electrodes, and a manifold for feeding the supply of fuel gas or the supply of oxidant gas to the respective electrode and disposed on a side face of each unit cell. In the polymer electrolyte fuel cell stack, a sealing portion is disposed at least in the vicinity of each electrode. The polymer electrolyte fuel cell stack has excellent durability and productivity.
    Type: Application
    Filed: December 27, 2002
    Publication date: July 17, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhito Hatoh, Eiichi Yasumoto, Kazufumi Nishida, Hisaaki Gyoten, Teruhisa Kanbara, Hideo Ohara, Makoto Uchida, Yasushi Sugawara, Toshihiro Matsumoto
  • Patent number: 6579639
    Abstract: A polymer electrolyte fuel cell comprising an anode, a cathode, a polymer electrolyte membrane interposed between the anode and the cathode, an anode-side separator plate having a gas flow path to supply fuel gas to the anode and a cathode-side separator plate having a gas flow path to supply oxidant gas to the cathode. Each of the anode and the cathode comprises a catalyst layer in contact with the polymer electrolyte membrane, an electrode supporting material having gas permeability and electronic conductivity, and a water repellent layer interposed between the catalyst layer and the electrode supporting material. The water repellent layer has through holes through which the catalyst layer and the electrode supporting material are electrically connected.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: June 17, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisaaki Gyoten, Makoto Uchida, Eiichi Yasumoto, Hiroki Kusakabe, Yasushi Sugawara, Yoshihiro Hori
  • Publication number: 20030096154
    Abstract: A method of producing an electrode having a high performance in a simple and convenient manner which does not require the use of any of the medium, surfactant and pore-producing agent is disclosed. In the disclosed method, a layer including a catalyst powder is formed on a surface of a polymer electrolyte film or a porous conductive electrode substrate by supplying an electrostatically-charged catalyst powder to the polymer electrolyte film or the porous conductive electrode substrate. Alternatively, a layer including a catalyst powder is formed on a surface of a polymer electrolyte film or a porous conductive electrode substrate by spraying the catalyst powder on the surface of the polymer electrolyte film or the porous conductive electrode substrate together with a carrier gas, thereby to cause the catalyst powder to adhere to the surface.
    Type: Application
    Filed: September 17, 2002
    Publication date: May 22, 2003
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Eiichi Yasumoto, Hisaaki Gyoten, Makoto Uchida, Yasushi Sugawara, Yasutomo Funakoshi, Kouji Nakagawa, Toshihiro Matsumoto
  • Publication number: 20030087145
    Abstract: It has been difficult to keep the voltage of a polymer electrolyte fuel cell stable for a long period of time because uniform water content control over the plane of the membrane-electrode assembly is impossible. A gas diffusion electrode is produced by forming a conductive polymer layer composed of conductive particles and a polymer material on a porous material composed of carbon fiber, and forming a catalyst layer composed of platinum-carried carbon particles on the plane of the conductive polymer layer. The conductive polymer layer is composed of conductive particles different in particle size, and the content of the conductive particles having the smaller particle size is decreased from one end towards the other end of the gas diffusion electrode.
    Type: Application
    Filed: November 21, 2002
    Publication date: May 8, 2003
    Inventors: Eiichi Yasumoto, Akihiko Yoshida, Makoto Uchida, Junji Morita, Yasushi Sugawara, Hisaaki Gyoten, Masao Yamamoto, Osamu Sakai, Junji Niikura
  • Publication number: 20030078797
    Abstract: In order to effectively supply and demand electric power between an electric power supplier and a node or a group of nodes individually having an electric power generator, the present invention provides an electric power supply and demand management system capable of obtaining the difference between the total of electric power supplied from the electric power supplier to the node or group and the total of electric power consumed by the electric power loads of the node or group and capable of transmitting information for increasing/decreasing the amount of electric power supply so that the difference becomes smaller to the electric power supplier.
    Type: Application
    Filed: May 31, 2002
    Publication date: April 24, 2003
    Inventors: Teruhisa Kanbara, Hisaaki Gyoten, Hidekazu Tanigawa
  • Patent number: 6541144
    Abstract: A fuel cell system includes a first electrolyte-electrode assembly which comprises a hydrogen ion-conductive electrolyte layer, and a fuel electrode and a hydrogen-generating electrode that sandwich the electrolyte layer; a second electrolyte-electrode assembly which comprises a hydrogen ion-conductive electrolyte layer, and a fuel electrode and an oxidant electrode that sandwich the electrolyte layer; a fuel supplying means for supplying a liquid or gas fuel to the fuel electrode of the first electrolyte-electrode assembly; a means for applying to the fuel electrode of the first electrolyte-electrode assembly a potential which is positive to the hydrogen-generating electrode; and a means for supplying to the fuel electrode of the second electrolyte-electrode assembly hydrogen generated in the hydrogen-generating electrode.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: April 1, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisaaki Gyoten, Hiroki Kusakabe, Eiichi Yasumoto, Osamu Sakai