Patents by Inventor Hisakazu Otoi

Hisakazu Otoi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230044232
    Abstract: A memory die includes an alternating stack of insulating layers and electrically conductive layers through which memory opening fill structures vertically extend. The memory die includes at least three memory array regions interlaced with at least two contact regions, or at least three contact regions interlaced with at least two memory array regions in the same memory plane. A logic die including at least two word line driver regions can be bonded to the memory die. The interlacing of the contact regions and the memory array regions can reduce lateral offset of boundaries of the word line driver regions from boundaries of the contact regions.
    Type: Application
    Filed: December 20, 2021
    Publication date: February 9, 2023
    Inventors: James KAI, Yuki MIZUTANI, Hisakazu OTOI, Masaaki HIGASHITANI, Hiroyuki OAGAWA
  • Patent number: 11515317
    Abstract: A three-dimensional memory device can include at least one alternating stack of insulating layers and electrically conductive layers located over a semiconductor material layer, memory stack structures vertically extending through the at least one alternating stack, and a vertical stack of dielectric plates interlaced with laterally extending portions of the insulating layers of the at least one alternating stack. A conductive via structure can vertically extend through each dielectric plate and the insulating layers, and can contact an underlying metal interconnect structure. Additionally or alternatively, support pillar structures can vertically extend through the vertical stack of dielectric plates and into an opening through the semiconductor material layer, and can contact lower-level dielectric material layers embedding the underlying metal interconnect structure to enhance structural support to the three-dimensional memory device during manufacture.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 29, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Takaaki Iwai, Junpei Kanazawa, Hisakazu Otoi, Hironori Matsuoka, Raiden Matsuno
  • Publication number: 20210384207
    Abstract: A three-dimensional memory device can include at least one alternating stack of insulating layers and electrically conductive layers located over a semiconductor material layer, memory stack structures vertically extending through the at least one alternating stack, and a vertical stack of dielectric plates interlaced with laterally extending portions of the insulating layers of the at least one alternating stack. A conductive via structure can vertically extend through each dielectric plate and the insulating layers, and can contact an underlying metal interconnect structure. Additionally or alternatively, support pillar structures can vertically extend through the vertical stack of dielectric plates and into an opening through the semiconductor material layer, and can contact lower-level dielectric material layers embedding the underlying metal interconnect structure to enhance structural support to the three-dimensional memory device during manufacture.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 9, 2021
    Inventors: Takaaki IWAI, Junpei KANAZAWA, Hisakazu OTOI, Hironori MATSUOKA, Raiden MATSUNO
  • Patent number: 10985176
    Abstract: A three-dimensional memory device includes alternating stacks of insulating layers and electrically conductive layers located over a semiconductor material layer, and memory stack structures extending through one of the alternating stacks. Laterally-undulating backside trenches are present between alternating stacks, and include a laterally alternating sequence of straight trench segments and bulging trench segments. Cavity-containing dielectric fill structures and contact via structures are present in the laterally-undulating backside trenches. The contact via structures are located within the bulging trench segments. The contact via structures are self-aligned to sidewalls of the alternating stacks. Additional contact via structures may vertically extend through a dielectric alternating stack of a subset of the insulating layers and dielectric spacer layers laterally adjoining one of the alternating stacks.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: April 20, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Takaaki Iwai, Yoshitaka Otsu, Hisakazu Otoi
  • Patent number: 10892267
    Abstract: A contact via structure vertically extending through an alternating stack of insulating layers and electrically conductive layers is provided in a staircase region having stepped surfaces. The contact via structure is electrically isolated from each electrically conductive layer of the alternating stack except for an electrically conductive layer that directly underlies a horizontal interface of the stepped surfaces. A laterally-protruding portion of the contact via structure contacts an annular top surface of the electrically conductive layer. The electrical isolation can be provided by a ribbed insulating spacer that includes laterally-protruding annular rib regions at levels of the insulating layers, or can be provided by annular insulating spacers located at levels of the electrically conductive layers. The contact via structure can contact a top surface of an underlying metal interconnect structure that overlies a substrate to provide an electrically conductive path.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: January 12, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Mitsuteru Mushiga, Kenji Sugiura, Hisakazu Otoi, Shigehisa Inoue, Yuki Fukuda
  • Patent number: 10879262
    Abstract: A three-dimensional memory device includes alternating stacks of insulating layers and electrically conductive layers located over a semiconductor material layer, and memory stack structures extending through one of the alternating stacks. Laterally-undulating backside trenches are present between alternating stacks, and include a laterally alternating sequence of straight trench segments and bulging trench segments. Cavity-containing dielectric fill structures and contact via structures are present in the laterally-undulating backside trenches. The contact via structures are located within the bulging trench segments. The contact via structures are self-aligned to sidewalls of the alternating stacks. Additional contact via structures may vertically extend through a dielectric alternating stack of a subset of the insulating layers and dielectric spacer layers laterally adjoining one of the alternating stacks.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: December 29, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Takaaki Iwai, Yoshitaka Otsu, Hisakazu Otoi
  • Publication number: 20200312863
    Abstract: A three-dimensional memory device includes alternating stacks of insulating layers and electrically conductive layers located over a semiconductor material layer, and memory stack structures extending through one of the alternating stacks. Laterally-undulating backside trenches are present between alternating stacks, and include a laterally alternating sequence of straight trench segments and bulging trench segments. Cavity-containing dielectric fill structures and contact via structures are present in the laterally-undulating backside trenches. The contact via structures are located within the bulging trench segments. The contact via structures are self-aligned to sidewalls of the alternating stacks. Additional contact via structures may vertically extend through a dielectric alternating stack of a subset of the insulating layers and dielectric spacer layers laterally adjoining one of the alternating stacks.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Inventors: Takaaki IWAI, Yoshitaka OTSU, Hisakazu OTOI
  • Publication number: 20200312864
    Abstract: A three-dimensional memory device includes alternating stacks of insulating layers and electrically conductive layers located over a semiconductor material layer, and memory stack structures extending through one of the alternating stacks. Laterally-undulating backside trenches are present between alternating stacks, and include a laterally alternating sequence of straight trench segments and bulging trench segments. Cavity-containing dielectric fill structures and contact via structures are present in the laterally-undulating backside trenches. The contact via structures are located within the bulging trench segments. The contact via structures are self-aligned to sidewalls of the alternating stacks. Additional contact via structures may vertically extend through a dielectric alternating stack of a subset of the insulating layers and dielectric spacer layers laterally adjoining one of the alternating stacks.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Inventors: Takaaki IWAI, Yoshitaka OTSU, Hisakazu OTOI
  • Patent number: 10707314
    Abstract: A stack including doped semiconductor strips, a one-dimensional array of gate electrode strips, and a dielectric matrix layer is formed over a substrate. A two-dimensional array of openings is formed through the dielectric matrix layer and the one-dimensional array of gate electrode strips. A two-dimensional array of tubular gate electrode portions is formed in the two-dimensional array of openings. Each of the tubular gate electrode portions is formed directly on a respective one of the gate electrode strips. Gate dielectrics are formed on inner sidewalls of the tubular gate electrode portions. Vertical semiconductor channels are formed within each of the gate dielectrics by deposition of a semiconductor material. A two-dimensional array of vertical field effect transistors including surrounding gate electrodes is formed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: July 7, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Seje Takaki, Jongsun Sel, Hisakazu Otoi, Chao Feng Yeh
  • Patent number: 10629611
    Abstract: A method of forming a three-dimensional memory device includes forming an alternating stack of insulating layers and sacrificial material layers over a substrate, forming a patterned template structure around memory openings in a drain-select-level above the alternating stack, forming drain-select-level isolation structures in trenches in the patterned template structure, forming memory stack structures in the memory openings extending through the alternating stack, where each of the memory stack structures includes a memory film and a vertical semiconductor channel, replacing the sacrificial material layers with word lines, and separately replacing the patterned template structure with a drain select gate electrode.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: April 21, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Zhixin Cui, Kiyohiko Sakakibara, Mitsuteru Mushiga, Hisakazu Otoi, Kenji Sugiura
  • Patent number: 10615172
    Abstract: Memory openings and backside openings are formed through an alternating stack of insulating layers and sacrificial material layers with patterned stepped surfaces and an overlying retro-stepped dielectric material portion. The backside openings may be formed in rows with shape modifications in staircase regions to provide more lateral elongation in areas with lesser layers of the alternating stack. Non-circular horizontal cross-sectional shapes for the backside openings in the staircase regions allow formation of the backside opening with less shape distortion. Memory opening fill structures are formed in the memory openings, and the sacrificial material layers are replaced with electrically conductive layers using the backside openings as conduits for an etchant and for a deposition precursor material. The electrically conductive layers are isotropically recessed around each backside opening to form width-modulated cavities, which is filled with width-modulated insulating wall structures.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: April 7, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Koichiro Nagata, Junpei Kanazawa, Yoshitaka Otsu, Takaaki Iwai, Shuji Minagawa, Hisakazu Otoi
  • Patent number: 10586803
    Abstract: A method of forming a three-dimensional memory device includes forming an alternating stack of insulating layers and sacrificial material layers over a substrate, forming a patterned template structure around memory openings in a drain-select-level above the alternating stack, forming drain-select-level isolation structures in trenches in the patterned template structure, forming memory stack structures in the memory openings extending through the alternating stack, where each of the memory stack structures includes a memory film and a vertical semiconductor channel, replacing the sacrificial material layers with word lines, and separately replacing the patterned template structure with a drain select gate electrode.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 10, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Mitsuteru Mushiga, Hisakazu Otoi, Kenji Sugiura, Zhixin Cui, Kiyohiko Sakakibara
  • Patent number: 10516025
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, and a memory stack structure extending through the alternating stack. The memory stack structure includes a tunneling dielectric layer, a vertical semiconductor channel, and a vertical stack of charge storage structures. Each of the charge storage structures includes an annular silicon nitride portion, a lower silicon nitride portion underlying the upper silicon nitride portion, and a spacer located between the upper silicon nitride portion and the lower silicon nitride portion. The upper and lower silicon nitride portions may be charge storage regions, while the spacer may be a floating gate or a dielectric spacer.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: December 24, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Masatoshi Nishikawa, Hisakazu Otoi, Akio Nishida
  • Publication number: 20190386108
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, and a memory stack structure extending through the alternating stack. The memory stack structure includes a tunneling dielectric layer, a vertical semiconductor channel, and a vertical stack of charge storage structures. Each of the charge storage structures includes an annular silicon nitride portion, a lower silicon nitride portion underlying the upper silicon nitride portion, and a spacer located between the upper silicon nitride portion and the lower silicon nitride portion. The upper and lower silicon nitride portions may be charge storage regions, while the spacer may be a floating gate or a dielectric spacer.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Inventors: Masatoshi NISHIKAWA, Hisakazu OTOI, Akio NISHIDA
  • Patent number: 10490569
    Abstract: Multiple tier structures are stacked over a substrate. Each tier structure includes an alternating stack of insulating layers and sacrificial material layers and a retro-stepped dielectric material portion overlying the alternating stack. Multiple types of openings are formed concurrently during formation of each tier structure. Openings concurrently formed through each tier structure can include at least two types of openings that may be selected from through-tier memory openings, through-tier support openings, and through-tier staircase-region openings. Each through-tier opening is filled with a respective through-tier sacrificial opening fill structure. Stacks of through-tier sacrificial opening fill structures can be removed in stages to form various device components, which include memory stack structures, support pillar structures, and staircase-region contact via structures.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 26, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Mitsuteru Mushiga, Hisakazu Otoi, Kensuke Yamaguchi, James Kai, Zhixin Cui, Murshed Chowdhury, Johann Alsmeier, Tong Zhang
  • Patent number: 10490564
    Abstract: A method of forming a three-dimensional memory device includes forming an alternating stack of insulating layers and sacrificial material layers over a substrate, forming a patterned template structure around memory openings in a drain-select-level above the alternating stack, forming drain-select-level isolation structures in trenches in the patterned template structure, forming memory stack structures in the memory openings extending through the alternating stack, where each of the memory stack structures includes a memory film and a vertical semiconductor channel, replacing the sacrificial material layers with word lines, and separately replacing the patterned template structure with a drain select gate electrode.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 26, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Mitsuteru Mushiga, Hisakazu Otoi, Kenji Sugiura
  • Publication number: 20190348435
    Abstract: Memory openings and backside openings are formed through an alternating stack of insulating layers and sacrificial material layers with patterned stepped surfaces and an overlying retro-stepped dielectric material portion. The backside openings may be formed in rows with shape modifications in staircase regions to provide more lateral elongation in areas with lesser layers of the alternating stack. Non-circular horizontal cross-sectional shapes for the backside openings in the staircase regions allow formation of the backside opening with less shape distortion. Memory opening fill structures are formed in the memory openings, and the sacrificial material layers are replaced with electrically conductive layers using the backside openings as conduits for an etchant and for a deposition precursor material. The electrically conductive layers are isotropically recessed around each backside opening to form width-modulated cavities, which is filled with width-modulated insulating wall structures.
    Type: Application
    Filed: March 25, 2019
    Publication date: November 14, 2019
    Inventors: Koichiro Nagata, Junpei Kanazawa, Yoshitaka Otsu, Takaaki Iwai, Shuji Minagawa, Hisakazu Otoi
  • Publication number: 20190326313
    Abstract: A method of forming a three-dimensional memory device includes forming an alternating stack of insulating layers and sacrificial material layers over a substrate, forming a patterned template structure around memory openings in a drain-select-level above the alternating stack, forming drain-select-level isolation structures in trenches in the patterned template structure, forming memory stack structures in the memory openings extending through the alternating stack, where each of the memory stack structures includes a memory film and a vertical semiconductor channel, replacing the sacrificial material layers with word lines, and separately replacing the patterned template structure with a drain select gate electrode.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 24, 2019
    Inventors: Zhixin Cui, Kiyohiko Sakakibara, Mitsuteru Mushiga, Hisakazu Otoi, Kenji Sugiura
  • Publication number: 20190326306
    Abstract: A method of forming a three-dimensional memory device includes forming an alternating stack of insulating layers and sacrificial material layers over a substrate, forming a patterned template structure around memory openings in a drain-select-level above the alternating stack, forming drain-select-level isolation structures in trenches in the patterned template structure, forming memory stack structures in the memory openings extending through the alternating stack, where each of the memory stack structures includes a memory film and a vertical semiconductor channel, replacing the sacrificial material layers with word lines, and separately replacing the patterned template structure with a drain select gate electrode.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 24, 2019
    Inventors: Mitsuteru Mushiga, Hisakazu Otoi, Kenji Sugiura, Zhixin Cui, Kiyohiko Sakakibara
  • Publication number: 20190326307
    Abstract: A method of forming a three-dimensional memory device includes forming an alternating stack of insulating layers and sacrificial material layers over a substrate, forming a patterned template structure around memory openings in a drain-select-level above the alternating stack, forming drain-select-level isolation structures in trenches in the patterned template structure, forming memory stack structures in the memory openings extending through the alternating stack, where each of the memory stack structures includes a memory film and a vertical semiconductor channel, replacing the sacrificial material layers with word lines, and separately replacing the patterned template structure with a drain select gate electrode.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 24, 2019
    Inventors: Mitsuteru Mushiga, Hisakazu Otoi, Kenji Sugiura