Patents by Inventor Hisao Arimune

Hisao Arimune has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040206388
    Abstract: There is disclosed a photoelectric conversion device comprising a substrate 1 serving as a lower electrode; first conductivity-type crystalline semiconductor particles 3 deposited on the substrate; second conductivity-type semiconductor layers 4 formed on the crystalline semiconductor particles 3; an insulator layer 2 formed among the crystalline semiconductor particles; and an upper electrode layer 5 formed on the second conductivity-type semiconductor layers 4, wherein the second conductivity-type semiconductor layers 4 each have a smaller thickness at or below an equator of each of the crystalline semiconductor particles than at a zenith region thereof, and the second conductivity-type semiconductor layers 4 include an impurity element with a concentration gradient decreasing with proximity to the crystalline semiconductor particles.
    Type: Application
    Filed: February 18, 2004
    Publication date: October 21, 2004
    Applicant: KYOCERA CORPORATION
    Inventors: Shin Sugawara, Atsuo Hatate, Akiko Komoda, Hisao Arimune
  • Publication number: 20040007753
    Abstract: There is disclosed a photoelectric conversion device which is manufactured by depositing numerous crystalline semiconductor particles of one conductivity type on a substrate having an electrode of one side to join the crystalline semiconductor particles to the substrate, interposing an insulator among the crystalline semiconductor particles, forming a semiconductor layer of the opposite conductivity type over the crystalline semiconductor particles, and connecting an electrode to the semiconductor layer of the opposite conductivity type, in which the insulator comprises a mixture or reaction product of polysiloxane and polycarbosilane. The insulator interposed among the crystalline semiconductor particles is free from defects such as cracking and peeling, so that a low cost photoelectric conversion device with high reliability can be provided.
    Type: Application
    Filed: April 25, 2003
    Publication date: January 15, 2004
    Applicant: KYOCERA CORPORATION
    Inventors: Yoji Seki, Takeshi Kyoda, Yoshio Miura, Hisao Arimune
  • Patent number: 6664567
    Abstract: A photoelectric conversion device is provided, which comprises: a substrate serving as an electrode; numerous crystalline semiconductor particles containing a first conductivity-type impurity deposited on the substrate to join thereto; an insulator provided among the crystalline semiconductor particles; and a semiconductor layer containing an impurity of the opposite conductivity-type to which another electrode is connected, which semiconductor layer being provided over the crystalline semiconductor particles, wherein the crystalline semiconductor particles comprise silicon, and the insulator comprises a glass material which contains at least 1 wt % and at most 20 wt % tin oxide. By this arrangement, it is possible to form a good insulator capable of filling spaces among the crystalline semiconductor particles and preventing defects such as cracking, bubbling and abnormal deposition from occurring, and consequently to provide a photoelectric conversion device with high reliability at low cost.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: December 16, 2003
    Assignee: Kyocera Corporation
    Inventors: Takeshi Kyoda, Jun Fukuda, Shinya Kawai, Hisao Arimune
  • Patent number: 6653552
    Abstract: There is provided a photoelectric conversion device comprising a lower electrode, numerous crystalline semiconductor particles of one conductivity type deposited on the lower electrode, an insulator interposed among the crystalline semiconductor particles, and a semiconductor layer of the opposite conductivity type provided over the crystalline semiconductor particles, in which a pyramidal projection having a cross section in the shape of a trapezoid or triangle and a lateral face that faces one of the crystalline semiconductor particles is provided between the crystalline semiconductor particles. In this device, light incident on areas among the crystalline semiconductor particles is reflected or refracted by the pyramidal projection and directed into the crystalline semiconductor particles. Accordingly, this device can achieve high conversion efficiency.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 25, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Nobuyuki Kitahara, Hisao Arimune, Toshifumi Kiyohara, Ken Watanuki
  • Patent number: 6620996
    Abstract: An insulator is formed on a substrate, on which numerous first conductivity-type crystalline semiconductor particles are deposited on and brought into contact with the substrate. A second conductivity-type semiconductor layer for forming a PN-junction between the layer and the crystalline semiconductor particles is formed over the crystalline semiconductor particles and the insulator. The second conductivity-type semiconductor layer comprises a semiconductor layer including a crystalline semiconductor and an amorphous semiconductor in a mixed manner.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: September 16, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Patent number: 6620997
    Abstract: In a photoelectric conversion device having numerous crystalline semiconductor grains deposited on a substrate, the substrate includes an aluminum layer or an aluminum alloy layer, an intermediate layer, and a base material layer, in which the intermediate layer is arranged such that it is composed mainly of one or a plurality of elements selected from among nickel, titanium, chromium, and cobalt. With the constitution as above, it is possible to suppress reaction between the aluminum electrode layer and the base material layer, thereby maintaining the high adhesiveness of the aluminum electrode layer. A photoelectric conversion device with high reliability and high conversion efficiency is therefore realized.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: September 16, 2003
    Assignee: Kyocera Corporation
    Inventors: Takeshi Kyoda, Shin Sugawara, Hisao Arimune, Nobuyuki Kitahara
  • Patent number: 6610920
    Abstract: Plasma is generated from a plasma generating gas comprising an inert gas and hydrogen gas. Silicon material is passed through the plasma and heated so as to form a crystalline silicon particle containing hydrogen at a concentration of 1×1016-1×1020. A great number of the crystalline silicon particles of p-type or n-type are deposited on a substrate as the electrode of one side. An insulator is formed among the crystalline silicon particles on the substrate, and a n-type or p-type semiconductor layer is formed over the crystalline silicon particles, thereby fabricating a photoelectric conversion device. The photoelectric conversion device using the crystalline silicon particles exhibits high photoelectric conversion efficiency.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: August 26, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Patent number: 6563041
    Abstract: This photoelectric conversion device comprises a lower electrode, numerous p-type crystalline semiconductor particles deposited thereon, an insulator formed among the crystalline semiconductor particles, and a n-type semiconductor layer formed on the side of the upper portions of the crystalline semiconductor particles. The insulator is formed of a translucent material, and the surface of the lower electrode has been subjected to roughening treatment. Roughening the surface of the lower electrode allows light incident on the surface of the lower electrode to be scattered and directed to the crystalline semiconductor particles so that the photoelectric conversion efficiency is improved.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: May 13, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Nobuyuki Kitahara, Hisao Arimune
  • Publication number: 20030080451
    Abstract: A crucible is formed of a cylindrical body member and a disk-shaped nozzle member fitted to the bottom portion of the body member, and the nozzle member is provided with a nozzle hole for discharging out a semiconductor molten solution dropwise therethrough. The semiconductor molten solution drops discharged out of the crucible through the nozzle hole are cooled and solidified during falling to become semiconductor grains. Silicon grains having high crystal quality can be manufactured at low cost.
    Type: Application
    Filed: October 21, 2002
    Publication date: May 1, 2003
    Applicant: KYOCERA CORPORATION
    Inventors: Nobuyuki Kitahara, Toshio Suzuki, Noboru Suda, Shin Sugawara, Hisao Arimune
  • Patent number: 6552405
    Abstract: A photoelectric conversion device according to the present invention comprises an aluminum substrate or a substrate formed with an aluminum layer thereon, numerous p type crystalline semiconductor particles deposited on the substrate, an insulator interposed among the numerous p type crystalline semiconductor particles, and a n type semiconductor region formed on the upper portions of the p type crystalline semiconductor particles. An alloy portion comprising the aluminum and the semiconductor material is formed in a boundary part between the aluminum layer and the p type crystalline semiconductor particles, and a p+ region is formed in an interfacial part between the alloy portion and the p type crystalline semiconductor particle on the side of the p type crystalline semiconductor particle.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: April 22, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Publication number: 20030047735
    Abstract: A photoelectric conversion device is provided, which comprises: a substrate serving as an electrode; numerous crystalline semiconductor particles containing a first conductivity-type impurity deposited on the substrate to join thereto; an insulator provided among the crystalline semiconductor particles; and a semiconductor layer containing an impurity of the opposite conductivity-type to which another electrode is connected, which semiconductor layer being provided over the crystalline semiconductor particles, wherein the crystalline semiconductor particles comprise silicon, and the insulator comprises a glass material which contains at least 1 wt % and at most 20 wt % tin oxide. By this arrangement, it is possible to form a good insulator capable of filling spaces among the crystalline semiconductor particles and preventing defects such as cracking, bubbling and abnormal deposition from occurring, and consequently to provide a photoelectric conversion device with high reliability at low cost.
    Type: Application
    Filed: June 26, 2002
    Publication date: March 13, 2003
    Inventors: Takeshi Kyoda, Jun Fukuda, Shinya Kawai, Hisao Arimune
  • Publication number: 20020162585
    Abstract: There is provided a photoelectric conversion device comprising a lower electrode, numerous crystalline semiconductor particles of one conductivity type deposited on the lower electrode, an insulator interposed among the crystalline semiconductor particles, and a semiconductor layer of the opposite conductivity type provided over the crystalline semiconductor particles, in which a pyramidal projection having a cross section in the shape of a trapezoid or triangle and a lateral face that faces one of the crystalline semiconductor particles is provided between the crystalline semiconductor particles. In this device, light incident on areas among the crystalline semiconductor particles is reflected or refracted by the pyramidal projection and directed into the crystalline semiconductor particles. Accordingly, this device can achieve high conversion efficiency.
    Type: Application
    Filed: February 22, 2002
    Publication date: November 7, 2002
    Inventors: Shin Sugawara, Takeshi Kyoda, Nobuyuki Kitahara, Hisao Arimune, Toshifumi Kiyohara, Ken Watanuki
  • Publication number: 20020134420
    Abstract: In a photoelectric conversion device having numerous crystalline semiconductor grains deposited on a substrate, the substrate includes an aluminum layer or an aluminum alloy layer, an intermediate layer, and a base material layer, in which the intermediate layer is arranged such that it is composed mainly of one or a plurality of elements selected from among nickel, titanium, chromium, and cobalt. With the constitution as above, it is possible to suppress reaction between the aluminum electrode layer and the base material layer, thereby maintaining the high adhesiveness of the aluminum electrode layer. A photoelectric conversion device with high reliability and high conversion efficiency is therefore realized.
    Type: Application
    Filed: October 29, 2001
    Publication date: September 26, 2002
    Applicant: KYOCERA CORPORATION
    Inventors: Takeshi Kyoda, Shin Sugawara, Hisao Arimune, Nobuyuki Kitahara
  • Publication number: 20020117667
    Abstract: This photoelectric conversion device comprises a lower electrode, numerous p-type crystalline semiconductor particles deposited thereon, an insulator formed among the crystalline semiconductor particles, and a n-type semiconductor layer formed on the side of the upper portions of the crystalline semiconductor particles. The insulator is formed of a translucent material, and the surface of the lower electrode has been subjected to roughening treatment. Roughening the surface of the lower electrode allows light incident on the surface of the lower electrode to be scattered and directed to the crystalline semiconductor particles so that the photoelectric conversion efficiency is improved.
    Type: Application
    Filed: November 27, 2001
    Publication date: August 29, 2002
    Applicant: KYOCERA CORPORATION
    Inventors: Shin Sugawara, Takeshi Kyoda, Nobuyuki Kitahara, Hisao Arimune
  • Patent number: 6437234
    Abstract: A method of manufacturing a photoelectric conversion device according to the present invention comprises the steps of: applying numerous glass particles having a particle size before baking being 5 to 25% of that of crystalline semiconductor particles to a substrate having an electrode of one side; depositing the crystalline semiconductor particles on the layer of the glass particles; pressing the crystalline semiconductor particles against the substrate; and subjecting them to baking, whereby manufacturing a photoelectric conversion device in which the crystalline semiconductor particles and the substrate have been joined together as well as an insulator has been interposed among the crystalline semiconductor particles. Accordingly, the photoelectric conversion device has good conversion efficiency and is manufactured at a low cost.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 20, 2002
    Assignee: Kyocera Corporation
    Inventors: Takeshi Kyoda, Shin Sugawara, Hisao Arimune
  • Publication number: 20020056474
    Abstract: Plasma is generated from a plasma generating gas comprising an inert gas and hydrogen gas. Silicon material is passed through the plasma and heated so as to form a crystalline silicon particle containing hydrogen at a concentration of 1×1016-1×1020. A great number of the crystalline silicon particles of p-type or n-type are deposited on a substrate as the electrode of one side. An insulator is formed among the crystalline silicon particles on the substrate, and a n-type or p-type semiconductor layer is formed over the crystalline silicon particles, thereby fabricating a photoelectric conversion device. The photoelectric conversion device using the crystalline silicon particles exhibits high photoelectric conversion efficiency.
    Type: Application
    Filed: September 26, 2001
    Publication date: May 16, 2002
    Applicant: KYOCERA CORPORATION
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Publication number: 20020036009
    Abstract: A method of manufacturing a photoelectric conversion device according to the present invention comprises the steps of: applying numerous glassparticles having a particle size before baking being 5 to 25% of that of crystalline semiconductor particles to a substrate having an electrode of one side; depositing the crystalline semiconductor particles on the layer of the glassparticles; pressing the crystalline semiconductor particles against the substrate; and subjecting them to 3 baking, whereby manufacturing a photoelectric conversion device in which the crystalline semiconductor particles and the substrate have been joined together as well as an insulator has been interposed among the crystalline semiconductor particles. Accordingly, the photoelectric conversion device has good conversion efficiency and is manufactured at a low cost.
    Type: Application
    Filed: July 26, 2001
    Publication date: March 28, 2002
    Applicant: KYOCERA CORPORATION
    Inventors: Takeshi Kyoda, Shin Sugawara, Hisao Arimune
  • Publication number: 20020033514
    Abstract: A photoelectric conversion device according to the present invention comprises an aluminum substrate or a substrate formed with an aluminum layer thereon, numerous p type crystalline semiconductor particles deposited on the substrate, an insulator interposed among the numerous p type crystalline semiconductor particles, and a n type semiconductor region formed on the upper portions of the p type crystalline semiconductor particles. An alloy portion comprising the aluminum and the semiconductor material is formed in a boundary part between the aluminum layer and the p type crystalline semiconductor particles, and a p+ region is formed in an interfacial part between the alloy portion and the p type crystalline semiconductor particle on the side of the p type crystalline semiconductor particle.
    Type: Application
    Filed: July 26, 2001
    Publication date: March 21, 2002
    Applicant: KYOCERA CORPORATION
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Publication number: 20020023674
    Abstract: An insulator is formed on a substrate, on which numerous first conductivity-type crystalline semiconductor particles are deposited on and brought into contact with the substrate. A second conductivity-type semiconductor layer for forming a PN-junction between the layer and the crystalline semiconductor particles is formed over the crystalline semiconductor particles and the insulator. The second conductivity-type semiconductor layer comprises a semiconductor layer including a crystalline semiconductor and an amorphous semiconductor in a mixed manner.
    Type: Application
    Filed: May 25, 2001
    Publication date: February 28, 2002
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Patent number: 5232790
    Abstract: The refractive index of a dielectric layer between a transparent substrate and a magneto-optical recording layer is varied across the thickness, with a portion of the layer on the substrate side having a lower refractive index and the other portion on the magneto-optical recording layer side having a higher refractive index, to prevent the disc from warping. To increase the refractive index within the the dielectric layer, the argon pressure is lowered in the course of the sputtering. Alternatively, an interruption of the sputtering can reduce warpage.
    Type: Grant
    Filed: April 25, 1991
    Date of Patent: August 3, 1993
    Assignee: Kyocera Corporation
    Inventors: Hisao Arimune, Mituo Miyazaki, Hiroki Tanaka