Patents by Inventor Hisao Nakashima

Hisao Nakashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8873973
    Abstract: A digital coherent receiver includes a sampling phase detector to detect a phase of a sampled digital signal, and a phase adjustor to adjust the sampling phase of the digital signal based upon the detected phase. The phase detector includes filters to equalize the digital signal with different equalization characteristics; sensitivity monitoring phase detectors, each connected to one of the filters and outputting a phase detection signal representing the phase of the output signal from the associated filter together with a sensitivity monitoring signal representing the sensitivity of the phase detection; sensitivity correction coefficient generators, each generating a sensitivity correction coefficient for correcting the associated phase detection signal using a square sum of the sensitivity monitoring signals; and an adder to add the phase detection signals that have been corrected by the sensitivity correction coefficients, and output a phase signal.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Limited
    Inventors: Kosuke Komaki, Hisao Nakashima
  • Publication number: 20140301743
    Abstract: A light receiving device includes: a converter digitalizing an analog signal with a given sampling clock frequency, the analog signal being obtained through a photoelectric conversion of a received optical signal; a plurality of fixed distortion compensators compensating an output signal of the converter for waveform distortion with a fixed compensation amount that is different from each other; a plurality of phase shift detector circuits detecting a sampling phase shift from an output signal of the plurality of the fixed distortion compensators; a phase-adjusting-amount determiner determining a sampling phase adjusting amount with use of an output signal of the plurality of the phase shift detector circuits; and a phase adjusting circuit reducing a phase difference between the sampling clock frequency and the received optical signal based on a determination result of the phase-adjusting-amount determiner.
    Type: Application
    Filed: November 25, 2013
    Publication date: October 9, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Hisao NAKASHIMA, Takeshi HOSHIDA
  • Publication number: 20140270810
    Abstract: Provided is a frequency error estimating apparatus used for a coherent optical receiver, which determines an amplitude of a baseband digital electrical signal converted from a received light signal modulated with a phase and amplitude shift keying, determines, with respect to each determined amplitude, a modulated phase component of the baseband digital electrical signal based on phase noise estimation values and frequency error estimation values of N previous symbols (N is a positive integer), and calculates a frequency error based on an inter-symbol phase difference of a signal obtained by cancelling the modulated phase component from the baseband digital electrical signal.
    Type: Application
    Filed: January 30, 2014
    Publication date: September 18, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Hisao Nakashima
  • Patent number: 8805207
    Abstract: A distortion compensator, an optical receiver and a transmission system including an operation selectively compensating for linear waveform distortion exerted on an optical signal via a plurality of distortion compensators and compensating for nonlinear waveform distortion exerted on the optical signal using nonlinear distortion compensators.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: August 12, 2014
    Assignee: Fujitsu Limited
    Inventors: Takahito Tanimura, Takeshi Hoshida, Hisao Nakashima, Shoichiro Oda
  • Publication number: 20140212132
    Abstract: A method of tap coefficient correction includes: obtaining a synchronization symbol difference between a first polarization and a second polarization orthogonal to the first polarization; obtaining a delay amount of each of the first polarization and the second polarization in an adaptive equalizer; calculating, in a case where a horizontal axis represents a tap number and a vertical axis represents a tap coefficient and a tap number or a nearest tap number with which an area of a drawn figure is halved is set as a gravity center of tap coefficients, a correction reference gravity center of the tap coefficients set in the adaptive equalizer, based on the synchronization symbol difference and the delay amount; and performing a correction of shifting an entire tap coefficients in units of symbol to cause the correction reference gravity center to be closest to a tap center.
    Type: Application
    Filed: November 18, 2013
    Publication date: July 31, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Taku Saito, Nobukazu Koizumi, Hisao Nakashima, Osamu Takeuchi, Hirofumi Araki
  • Patent number: 8762086
    Abstract: The present invention discloses a phase imbalance monitoring apparatus, an amplitude imbalance monitoring apparatus, as well as an apparatus incorporating the same. The phase imbalance monitoring apparatus is for use in an apparatus in which imbalance between an I branch signal and a Q branch signal in quadrature to each other is required to be monitored, and is characterized in comprising a preprocessing unit, for performing preprocessing on the I branch signal and the Q branch signal to extract essential information relevant to correlation of the signals; and a correlation unit, for performing correlation processing on the extracted essential information to learn of the phase imbalance between the I branch signal and the Q branch signal.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: June 24, 2014
    Assignee: Fujitsu Limited
    Inventors: Zhenning Tao, Jun Tian, Huijian Zhang, Hisao Nakashima
  • Patent number: 8750443
    Abstract: The present invention relates to a phase error estimator, a coherent receiver and a phase error estimating method. The phase error estimator estimates a phase error in an inputted base band electric signal and feeds back said phase error; said phase error estimator comprises: a pre-decider, for judging a phase of data in said base band electric signal in accordance with said feedback phase error; a phase error complex value extracting section, for extracting a real part and an imaginary part of the phase error in accordance with the judgment result of said pre-decider; a phase error determining section, for determining said phase error in accordance with the real part and the imaginary part of the phase error extracted by the phase error complex value extracting section; and a time delay feeding back section, for delaying said phase error by N number of symbols and feeding back the delayed phase error to said pre-decider, wherein N is an integer greater than 1.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: June 10, 2014
    Assignee: Fujitsu Limited
    Inventors: Zhenning Tao, Lei Li, Hisao Nakashima
  • Patent number: 8744278
    Abstract: In a digital signal processing circuit of an optical receiver applicable to this method for electric power supply control, tap coefficients of a filter used in a waveform equalization section are calculated in a tap coefficient calculating section, based on a state of an optical fiber transmission line. Then, among the calculated tap coefficients, a tap coefficient for which an absolute value is less than a previously determined threshold is determined, and electric power supply to a circuit part of a filter corresponding to the tap coefficient is stopped. As a result, for an optical receiver that performs digital signal processing, it is possible to reduce the power consumption, while realizing waveform equalization at a high accuracy.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 3, 2014
    Assignee: Fujitsu Limited
    Inventors: Shoichiro Oda, Takeshi Hoshida, Hisao Nakashima, Takahito Tanimura
  • Patent number: 8744276
    Abstract: An optical receiving apparatus includes a combining unit that combines signal light and reference light; a optoelectric converting unit that converts, into electrical signals, two or more optical signals that enable reconstruction of a complex electric field signal of the signal light obtained by the combining unit; and a sampling clock generating unit that generates a sampling clock that has a frequency preset based on a symbol rate of the signal light and is asynchronous with the signal light. The optical receiving apparatus further includes a digital converting unit that samples at the frequency of the sampling clock signal, an electrical signal obtained by the optoelectric converting unit and converts the electrical signal into a digital signal; and a digital signal processing unit that demodulates a received signal based on a complex digital signal obtained from the digital signal obtained by the digital converting unit.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: June 3, 2014
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida, Takahito Tanimura, Lei Li, Ling Liu
  • Patent number: 8705981
    Abstract: A drive signal generation unit generates first and second drive signals for driving first and second phase modulators of a DQPSK optical modulator. First and second regeneration circuits regenerate the first and second drive signals with respect to clock signals. The first and second phase modulators are driven by the regenerated first and second drive signals. The amplitude of the first drive signal is adjusted by a first attenuator. The clock signal for the second regeneration circuit is applied after attenuated by a second attenuator. The delay time caused by the first attenuator is the same as the delay time caused by the second attenuator.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 22, 2014
    Assignee: Fujitsu Limited
    Inventors: Tomoo Takahara, Takeshi Hoshida, Hisao Nakashima
  • Publication number: 20140099110
    Abstract: An optical transmission system includes: a plurality of transmitters that output an optical signal having a frequency different from each other; a process unit that adds a reference signal to at least two of the optical signals, the reference signal having a frequency width narrower than that of the two optical signals, an interval of central frequencies of the reference signals being narrower than that of the two optical signals, a multiplexer that multiplexes optical signals output by the plurality of transmitters; an extract unit that extracts a beat signal generated between the reference signals because of a multiplexing of the multiplexer; and an adjust unit that adjusts a frequency interval of the two optical signals in accordance with an extract result of the extract unit.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 10, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Tomofumi Oyama, Takeshi Hoshida, Hisao Nakashima
  • Patent number: 8693898
    Abstract: An adaptive equalizer includes a finite impulse response filter with a predetermined number of taps; and a tap coefficient adaptive controller having a register to hold tap coefficients for the filter, a weighted center calculator to calculate a weighted center of the tap coefficients, and a tap coefficient shifter to shift the tap coefficients based on a calculation result of the weighted center. During an initial training period, the tap coefficient shifter shifts the tap coefficients on a symbol data basis such that a difference between the calculated weighted center of the tap coefficients and a tap center defined by the number of taps is minimized.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Fujitsu Limited
    Inventors: Nobukazu Koizumi, Kazuhiko Hatae, Noriyasu Nakayama, Koji Nakamuta, Hisao Nakashima, Kosuke Komaki
  • Publication number: 20140064345
    Abstract: A signal processing apparatus includes a number P of adaptive equalization filters, P being 2 or more, configured to execute a first computing process for equalization on respective input signals, and to issue output signals; a number N of error calculation circuits, N being not more than P, configured to determine, per adaptive equalization filter, a second computing process to calculate an error in order to reduce a difference between a value of the output signal obtained with the first computing process and a predetermined objective value of the output signal; and an update circuit configured to determine a third computing process based on the second computing process determined per adaptive equalization filter by the error calculation circuit, and to update a computing process, which is executed in the adaptive equalization filter, to the third computing process.
    Type: Application
    Filed: July 29, 2013
    Publication date: March 6, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Kiichi Sugitani, Eri Katayama, Kazunari Shiota, Hisao Nakashima, Takeshi Hoshida
  • Patent number: 8660438
    Abstract: A digital coherent receiver includes a front end, an A/D convertor, and a processor. The front end converts a light signal into an electric signal by using a signal light and a local oscillator light. The A/D convertor converts the electric signal of the front end into a digital signal. The processor calculates a spectrum gravity center of the digital signal converted by the A/D convertor, estimates a frequency offset of the digital signal based on the calculated spectrum gravity center, and reduces the frequency offset of the digital signal based on the estimated frequency offset.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 25, 2014
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida, Kosuke Komaki
  • Patent number: 8649685
    Abstract: A light receiving device includes: a converter digitalizing an analog signal with a given sampling clock frequency, the analog signal being obtained through a photoelectric conversion of a received optical signal; a plurality of fixed distortion compensators compensating an output signal of the converter for waveform distortion with a fixed compensation amount that is different from each other; a plurality of phase shift detector circuits detecting a sampling phase shift from an output signal of the plurality of the fixed distortion compensators; a phase-adjusting-amount determiner determining a sampling phase adjusting amount with use of an output signal of the plurality of the phase shift detector circuits; and a phase adjusting circuit reducing a phase difference between the sampling clock frequency and the received optical signal based on a determination result of the phase-adjusting-amount determiner.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: February 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida
  • Patent number: 8649689
    Abstract: A digital coherent receiving apparatus includes a first oscillator for outputting a local light signal of a fixed frequency, a hybrid unit mixing the local light signal with a light signal received by a receiver, a second oscillator for outputting a sampling signal of a sampling frequency, a converter for converting the mixed light signal into digital signal synchronizing with the sampling signal, a waveform adjuster for adjusting a waveform distortion of the converted digital signal, a phase adjustor for adjusting a phase of the digital signal adjusted by the waveform adjustor, a demodulator for demodulating the digital signal adjusted by the phase adjuster, and a phase detector for detecting a phase of the digital signal adjusted by the phase adjuster, and a control signal output unit for outputting a frequency control signal on the basis of the detected phase signal to the second oscillator.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Nobukazu Koizumi, Takeshi Hoshida, Takahito Tanimura, Hisao Nakashima, Koji Nakamuta, Noriyasu Nakayama
  • Publication number: 20140029959
    Abstract: A digital coherent receiving apparatus includes a first oscillator for outputting a local light signal of a fixed frequency, a hybrid unit mixing the local light signal with a light signal received by a receiver, a second oscillator for outputting a sampling signal of a sampling frequency, a converter for converting the mixed light signal into digital signal synchronizing with the sampling signal, a waveform adjuster for adjusting a waveform distortion of the converted digital signal, a phase adjustor for adjusting a phase of the digital signal adjusted by the waveform adjustor, a demodulator for demodulating the digital signal adjusted by the phase adjuster, and a phase detector for detecting a phase of the digital signal adjusted by the phase adjuster, and a control signal output unit for outputting a frequency control signal on the basis of the detected phase signal to the second oscillator.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Nobukazu KOIZUMI, Takeshi Hoshida, Takahito Tanimura, Hisao Nakashima, Koji Nakamuta, Noriyasu Nakayama
  • Publication number: 20140029938
    Abstract: A method includes sweeping an optical frequency of an optical signal by an optical transmitter controlling an electric-field information signal corresponding to a transmitted signal, providing different polarization states for individual frequencies of the optical signal by the optical transmitter controlling a mixture of a first electric-field information signal corresponding to a first transmitted signal and a second electric-field information signal corresponding to a second transmitted signal, obtaining, for individual frequencies of the optical signal, polarization dependent characteristics corresponding to different frequencies, when the optical transmitter sweeps the frequency of the optical signal, by an optical receiver calculating a polarization-dependent characteristic of an optical transmission line between the optical transmitter and the optical receiver, based on items of received-electric-field information corresponding to the different polarization states, and obtaining statistical information
    Type: Application
    Filed: June 12, 2013
    Publication date: January 30, 2014
    Inventors: Hisao Nakashima, Takeshi Hoshida
  • Patent number: 8630552
    Abstract: A digital coherent receiver includes a front end, an A/D convertor, and a processor. The front end converts a light signal into an electric signal by using a signal light and a local oscillator light. The A/D convertor converts the electric signal of the front end into a digital signal. The processor calculates a spectrum gravity center of the digital signal converted by the A/D convertor, estimates a frequency offset of the digital signal based on the calculated spectrum gravity center, and reduces the frequency offset of the digital signal based on the estimated frequency offset.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: January 14, 2014
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida, Kosuke Komaki
  • Patent number: 8625996
    Abstract: An optical transmitter is provided for transmitting a wavelength multiplexed signal comprising an intensity modulation optical signal and a phase modulation optical signal through a transmission line. The optical transmitter includes a bit time difference given signal generator for generating at least two optical signals having a bit time difference therebetween, from the wavelength multiplexed signal. The optical transmitter further includes a wavelength multiplexed signal output unit to which at least two optical signals are input from the bit time difference given signal generator, and which generates and outputs a wavelength multiplexed signal in which the bit time difference was given between the phase modulation optical signal and the phase modulation optical signal.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: January 7, 2014
    Assignee: Fujitsu Limited
    Inventors: Toshiki Tanaka, Hisao Nakashima, Takeshi Hoshida, Toru Katagiri, Hiroki Ooi, Akira Miura