Patents by Inventor Hisato Koshiba

Hisato Koshiba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079167
    Abstract: A soft magnetic material according to an aspect of the present invention includes a powder-particle substance having a particle size frequency distribution having a plurality of peak tops. The powder-particle substance is an aggregate of composite particles containing a plurality of soft magnetic metal particles and includes a medium powder-particle substance in which the composite particles have a particle size of 45 ?m or more and less than 300 ?m, and the medium powder-particle substance has an average circularity of 0.7 or more.
    Type: Application
    Filed: August 1, 2023
    Publication date: March 7, 2024
    Inventors: Kenji YOSHIDA, Seiichi ABIKO, Shigeru KOBAYASHI, Hisato KOSHIBA, Kazuya OMINATO
  • Publication number: 20230081183
    Abstract: A dust core contains a powder of a crystalline magnetic material powder and a powder of an amorphous magnetic material. The sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder is 83 mass percent or more. The mass ratio of the content of the crystalline magnetic material powder to the sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder is 20 mass percent or less. The median diameter D50a of the amorphous magnetic material powder is greater than or equal to the median diameter D50c of the crystalline magnetic material powder. A 10% cumulative diameter D10a in a volume-based cumulative particle size distribution of the amorphous magnetic material powder is 9.5 ?m or less.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 16, 2023
    Inventors: Kinshiro TAKADATE, Hisato KOSHIBA, Shokan YAMASHITA
  • Patent number: 11529679
    Abstract: A dust core contains a powder of a crystalline magnetic material powder and a powder of an amorphous magnetic material. The sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder is 83 mass percent or more. The mass ratio of the content of the crystalline magnetic material powder to the sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder is 20 mass percent or less. The median diameter D50 of the amorphous magnetic material powder is greater than or equal to the median diameter D50 of the crystalline magnetic material powder.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: December 20, 2022
    Assignee: Alps Alpine Co., Ltd.
    Inventors: Kinshiro Takadate, Hisato Koshiba, Shokan Yamashita
  • Publication number: 20210350962
    Abstract: A powder magnetic core containing a magnetic particle of an Fe-based Cr-containing amorphous alloy and an organic binding substance is provided as a powder magnetic core with a small loss and high initial permeability. The depth profile of the composition determined from the surface of the magnetic particle in the powder magnetic core has the following characteristics. (1) An oxygen-containing region with an O/Fe ratio of 0.1 or more can be defined from the surface of the magnetic particle, and the oxygen-containing region has a depth of 35 nm or less from the surface. (2) A carbon-containing region with a C/O ratio of 1 or more can be defined from the surface of the magnetic particle, and the carbon-containing region has a depth of 5 nm or less from the surface. (3) The oxygen-containing region has a Cr-concentrated portion with a bulk Cr ratio of more than 1.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 11, 2021
    Inventors: Akio HANADA, Koichi FUJITA, Seiichi ABIKO, Hisato KOSHIBA
  • Patent number: 10950374
    Abstract: Provided is an Fe-based alloy composition capable of forming an amorphous soft magnetic material which contains no P and which has a glass transition temperature Tg, the Fe-based alloy composition having a composition represented by the formula (Fe1?aTa)100at %?(x+b+c+d)MxBbCcSid, where T is an arbitrary added element such as Ni and M is an arbitrary added element such as Cr, the formula satisfying the following conditions: 0?a?0.3, 11.0 at %?b?18.20 at %, 6.00 at %?c?17 at %, 0 at %?d?10 at %, and 0 at %?x?4 at %.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: March 16, 2021
    Assignee: Alps Alpine Co., Ltd.
    Inventors: Hisato Koshiba, Takao Mizushima, Takafumi Hibino, Teruo Bitoh
  • Publication number: 20180322991
    Abstract: Provided is an Fe-based alloy composition capable of forming an amorphous soft magnetic material which contains no P and which has a glass transition temperature Tg, the Fe-based alloy composition having a composition represented by the formula (Fe1?aTa)100at%?(x+b+c+d)MxBbCcSid, where T is an arbitrary added element such as Ni and M is an arbitrary added element such as Cr, the formula satisfying the following conditions: 0?a?0.3, 11.0 at %?b?18.20 at %, 6.00 at %?c?17 at %, 0 at %?d?10 at %, and 0 at %?x?4 at %.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Inventors: Hisato KOSHIBA, Takao MIZUSHIMA, Takafumi HIBINO, Teruo BITOH
  • Publication number: 20180021853
    Abstract: A dust core contains a powder of a crystalline magnetic material powder and a powder of an amorphous magnetic material. The sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder is 83 mass percent or more. The mass ratio of the content of the crystalline magnetic material powder to the sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder is 20 mass percent or less. The median diameter D50 of the amorphous magnetic material powder is greater than or equal to the median diameter D50 of the crystalline magnetic material powder.
    Type: Application
    Filed: September 22, 2017
    Publication date: January 25, 2018
    Inventors: Kinshiro TAKADATE, Hisato KOSHIBA, Shokan YAMASHITA
  • Patent number: 9558871
    Abstract: An Fe-based amorphous alloy of the present invention has a composition represented by formula (Fe100-a-b-c-d-eCraPbCcBdSie (a, b, c, d, and e are in terms of at %), where 0 at %?a?1.9 at %, 1.7 at %?b?8.0 at %, 0 at %?e?1.0 at %, an Fe content (100-a-b-c-d-e) is 77 at % or more, 19 at %?b+c+d+e?21.1 at %, 0.08?b/(b+c+d)?0.43, 0.06?c/(c+d)?0.87, and the Fe-based amorphous alloy has a glass transition temperature (Tg).
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: January 31, 2017
    Assignee: ALPS ELECTRIC CO., LTD.
    Inventors: Kinshiro Takadate, Hisato Koshiba
  • Patent number: 9422614
    Abstract: An Fe-based amorphous alloy of the present invention has a composition formula represented by Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit, and in the formula, 1 at %?a?10 at %, 0 at %?b?3 at %, 0 at %?c?6 at %, 6.8 at %?x?10.8 at %, 2.2 at %?y?9.8 at %, 0 at %?z?4.2 at %, and 0 at %?t?3.9 at % hold. Accordingly, an Fe-based amorphous alloy used for a powder core and/or a coil encapsulated powder core having a low glass transition temperature (Tg), a high conversion vitrification temperature (Tg/Tm), and excellent magnetization and corrosion resistance can be manufactured.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 23, 2016
    Assignee: ALPS GREEN DEVICES CO., LTD.
    Inventors: Keiko Tsuchiya, Hisato Koshiba, Kazuya Kaneko, Seiichi Abiko, Takao Mizushima
  • Patent number: 8854173
    Abstract: An Fe-based amorphous alloy powder of the present invention has a composition represented by (Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit)100-?M?. In this composition, 0 at %?a?10 at %, 0 at %?b?3 at %, 0 at %?c?6 at %, 6.8 at %?x?10.8 at %, 2.2 at %?y?9.8 at %, 0 at %?z?4.2 at %, and 0 at %?t?3.9 at % hold, a metal element M is at least one selected from the group consisting of Ti, Al, Mn, Zr, Hf, V, Nb, Ta, Mo, and W, and the addition amount ? of the metal element M satisfies 0.04 wt %???0.6 wt %. Accordingly, besides a decrease of a glass transition temperature (Tg), an excellent corrosion resistance and high magnetic characteristics can be obtained.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: October 7, 2014
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Keiko Tsuchiya, Jun Okamoto, Hisato Koshiba
  • Publication number: 20140102595
    Abstract: An Fe-based amorphous alloy of the present invention has a composition represented by formula (Fe100-a-b-c-d-eCraPbCcBdSie (a, b, c, d, and e are in terms of at %), where 0 at %?a?1.9 at %, 1.7 at %?b?8.0 at %, 0 at %?c?1.0 at %, an Fe content (100-a-b-c-d-e) is 77 at % or more, 19 at %?b+c+d+e?21.1 at %, 0.08?b/(b+c+d)?0.43, 0.06?c/(c+d)?0.87, and the Fe-based amorphous alloy has a glass transition temperature (Tg).
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Kinshiro TAKADATE, Hisato KOSHIBA
  • Publication number: 20140097922
    Abstract: An Fe-based amorphous alloy of the present invention has a composition formula represented by Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit, and in the formula, 1 at %?a?10 at %, 0 at %?b?3 at %, 0 at %?c?6 at %, 6.8 at %?x?10.8 at %, 2.2 at %?y?9.8 at %, 0 at %?z?4.2 at %, and 0 at %?t?3.9 at % hold. Accordingly, an Fe-based amorphous alloy used for a powder core and/or a coil encapsulated powder core having a low glass transition temperature (Tg), a high conversion vitrification temperature (Tg/Tm), and excellent magnetization and corrosion resistance can be manufactured.
    Type: Application
    Filed: December 11, 2013
    Publication date: April 10, 2014
    Applicant: Alps Green Devices Co., Ltd.
    Inventors: Keiko TSUCHIYA, Hisato KOSHIBA, Kazuya KANEKO, Seiichi ABIKO, Takao MIZUSHIMA
  • Patent number: 8685179
    Abstract: An Fe-based amorphous alloy of the present invention has a composition formula represented by Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit, and in the formula, 0 at %?a?10 at %, 0 at %?b?3 at %, 0 at %?c?6 at %, 6.8 at %?x?10.8 at %, 2.2 at %?y?9.8 at %, 0 at %?z?4.2 at %, and 0 at %?t?3.9 at % hold. Accordingly, an Fe-based amorphous alloy used for a powder core and/or a coil encapsulated powder core having a low glass transition temperature (Tg), a high conversion vitrification temperature (Tg/Tm), and excellent magnetization and corrosion resistance can be manufactured.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: April 1, 2014
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Keiko Tsuchiya, Hisato Koshiba, Kazuya Kaneko, Seiichi Abiko, Takao Mizushima
  • Publication number: 20130300531
    Abstract: An Fe-based amorphous alloy powder of the present invention has a composition represented by (Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit)100-?M?. In this composition, 0 at %?a?10 at %, 0 at %?b?3 at %, 0 at %?c?6 at %, 6.8 at %?x?10.8 at %, 2.2 at %?y?9.8 at %, 0 at %?z?4.2 at %, and 0 at %?t?3.9 at % hold, a metal element M is at least one selected from the group consisting of Ti, Al, Mn, Zr, Hf, V, Nb, Ta, Mo, and W, and the addition amount ? of the metal element M satisfies 0.04 wt %???0.6 wt %. Accordingly, besides a decrease of a glass transition temperature (Tg), an excellent corrosion resistance and high magnetic characteristics can be obtained.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Keiko TSUCHIYA, Jun OKAMOTO, Hisato KOSHIBA
  • Patent number: 8282745
    Abstract: An Fe-based soft magnetic alloy includes: Fe; and a component R, wherein the component R contains at least one of P, C, B, and Si, there is a temperature difference of equal to or greater than 20° C. between a precipitation temperature of an ?-Fe crystal phase and a precipitation temperature of an Fe compound, the Fe-based soft magnetic alloy is formed of a mixed-phase structure in which an amorphous phase and the ?-Fe crystal phase are mixed, and a diameter of a crystallite of the ?-Fe crystal phase is equal to or smaller than 50 nm, and a volume fraction of the ?-Fe crystal phase to the total is equal to or lower than 40%. In addition, the composition formula is represented by Fe100?x?uJxRu, a component J contains at least one of Cr, Co, Ni, and Nb, and 0 at %?x?6 at %, 17 at %?u?25 at %, and 17 at %?x+u?27.1 at % are satisfied.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: October 9, 2012
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Keiko Tsuchiya, Hisato Koshiba, Jun Okamoto, Takao Mizushima
  • Publication number: 20120092111
    Abstract: An Fe-based amorphous alloy of the present invention has a composition formula represented by Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit, and in the formula, 0 at %?a?10 at %, 0 at %?b?3 at %, 0 at %?c?6 at %, 6.8 at %?x?10.8 at %, 2.2 at %?y?9.8 at %, 0 at %?z?4.2 at %, and 0 at %?t?3.9 at % hold. Accordingly, an Fe-based amorphous alloy used for a powder core and/or a coil encapsulated powder core having a low glass transition temperature (Tg), a high conversion vitrification temperature (Tg/Tm), and excellent magnetization and corrosion resistance can be manufactured.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 19, 2012
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Keiko TSUCHIYA, Hisato KOSHIBA, Kazuya KANEKO, Seiichi ABIKO, Takao MIZUSHIMA
  • Patent number: 8147622
    Abstract: Embodiments of the present disclosure are directed to an Fe-based amorphous magnetic alloy and method that includes 4 at. % or less of a low temperature annealing-enabling element M and 10 at. % or less of nickel (Ni). The total amount of the low temperature annealing-enabling element M and nickel (Ni) may be 2 at. % or more and 10 at. % or less.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: April 3, 2012
    Assignee: Alps Green Devices Co. Ltd.
    Inventors: Hisato Koshiba, Keiko Tsuchiya, Kinshiro Takadate
  • Publication number: 20110265915
    Abstract: An Fe-based soft magnetic alloy includes: Fe; and a component R, wherein the component R contains at least one of P, C, B, and Si, there is a temperature difference of equal to or greater than 20° C. between a precipitation temperature of an ?-Fe crystal phase and a precipitation temperature of an Fe compound, the Fe-based soft magnetic alloy is formed of a mixed-phase structure in which an amorphous phase and the ?-Fe crystal phase are mixed, and a diameter of a crystallite of the ?-Fe crystal phase is equal to or smaller than 50 nm, and a volume fraction of the ?-Fe crystal phase to the total is equal to or lower than 40%. In addition, the composition formula is represented by Fe100-x-uJxRu, a component J contains at least one of Cr, Co, Ni, and Nb, and 0 at %?x?6 at %, 17 at %?u?25 at %, and 17 at %?x+u?27.1 at % are satisfied.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Keiko TSUCHIYA, Hisato KOSHIBA, Jun OKAMOTO, Takao MIZUSHIMA
  • Publication number: 20080142121
    Abstract: Embodiments of the present disclosure are directed to an Fe-based amorphous magnetic alloy and method that includes 4 at. % or less of a low temperature annealing-enabling element M and 10 at. % or less of nickel (Ni). The total amount of the low temperature annealing-enabling element M and nickel (Ni) may be 2 at. % or more and 10 at. % or less.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 19, 2008
    Applicant: Alps Electric Company, Ltd.
    Inventors: Hisato Koshiba, Keiko Tsuchiya, Kinshiro Takadate
  • Publication number: 20080006352
    Abstract: The magnetic sheet according to the present invention includes a resin and soft magnetic particles contained in the resin. The soft magnetic particles characteristically contain crystallites in an amorphous phase in a relatively small amount. The magnetic sheet can be obtained by producing soft magnetic particles consisting of an amorphous phase, producing a magnetic sheet containing the soft magnetic particles, and producing crystallites in the amorphous phase by annealing the magnetic sheet at a temperature of approximately the glass-transition temperature or approximately the crystallization temperature of the material constituting the soft magnetic particles.
    Type: Application
    Filed: June 22, 2007
    Publication date: January 10, 2008
    Applicant: ALPS ELECTRIC CO., LTD.
    Inventors: Hisato Koshiba, Kinsiro Takadate