Patents by Inventor Hisham Mohamed Hafez

Hisham Mohamed Hafez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220033291
    Abstract: A method and system for high rate acidification and organic solids solubilization of feedstocks such as municipal source separated organics, municipal sewage sludge, and various industrial organic wastes are disclosed. The method and system feature a completely mixed bioreactor containing hydrogen-producing microorganisms, a crossflow membrane unit or membrane module located downstream of the bioreactor, a storage tank for receiving concentrated microorganisms from the membrane unit or module, and a connection that recirculates desired quantities of biomass from the storage tank to the bioreactor. This configuration decouples the solids residence time (SRT) from the hydraulic retention time (HRT) and results in a high solubilization rate.
    Type: Application
    Filed: September 17, 2019
    Publication date: February 3, 2022
    Inventors: Hisham Mohamed HAFEZ, Ashar SAYEED, Christopher Bruce BRADT, David Alan SALT
  • Patent number: 10633622
    Abstract: The present invention provides a method that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The method includes biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: April 28, 2020
    Assignee: GREENFIELD SPECIALTY ALCOHOLS INC.
    Inventors: Hisham Mohamed Hafez, Mohamed Hesham El Naggar, George F. Nakhla
  • Patent number: 10351879
    Abstract: A method for producing hydrogen from organic material. Organic material and hydrogen-producing microorganisms are provided in a completely mixed bioreactor for breaking down the organic material into H2, CO2, fatty acids, and alcohols. H2, CO2, and a first liquid effluent are recovered from the completely mixed bioreactor. The first liquid effluent includes hydrogen-producing microorganisms, fatty acids, and alcohols. The first liquid effluent is provided into a gravity settler for separating the first liquid effluent into a concentrated biomass (including hydrogen-producing microorganisms) and a second liquid effluent (including at least a portion of the fatty acids and the alcohols). The concentrated biomass is provided into the completely mixed bioreactor. An input voltage is applied to at least one of the completely mixed bioreactor and the gravity settler for facilitating an electrohydrogenesis process therein.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: July 16, 2019
    Assignee: GreenField Specialty Alcohols Inc.
    Inventor: Hisham Mohamed Hafez
  • Publication number: 20180127697
    Abstract: The present invention provides a system that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The system includes a continuously stirred bioreactor (CSTR) for biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Application
    Filed: December 15, 2017
    Publication date: May 10, 2018
    Inventors: Hisham Mohamed Hafez, Mohamed Hesham El Naggar, George F. Nakhla
  • Publication number: 20180094195
    Abstract: A process and system for producing a synthetic hydrocarbon having a desired H/C ratio is disclosed. Organic material is biochemically digested in a two stage biodigester for separately producing a hydrogen containing biogas substantially free of methane in a first stage and a methane containing biogas in a second stage. The methane containing biogas is reformed in a first reformer to generate hydrogen gas and carbon monoxide gas, which are then combined in a mixer with the hydrogen containing biogas into a syngas in amounts to achieve in the syngas an overall H/C ratio substantially equal to the desired H/C ratio. The syngas is reacted with a catalyst in a second reformer, a Fischer-Tropsch (FT) reactor, to produce the hydrocarbon. Using a two stage biodigester allows for the generation of separate hydrogen and methane streams, a more economical generation of the FT syngas and reduced fouling of the FT catalyst.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 5, 2018
    Inventors: Richard Romeo LEHOUX, Hisham Mohamed HAFEZ, Ranjit SEHDEV, Dave SALT
  • Patent number: 9879212
    Abstract: The present invention provides a system that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The system includes a continuously stirred bioreactor (CSTR) for biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 30, 2018
    Assignee: GreenField Specialty Alcohols Inc.
    Inventors: Hisham Mohamed Hafez, Mohamed Hesham El Naggar, George F. Nakhla
  • Patent number: 9816035
    Abstract: A process and system for producing a synthetic hydrocarbon having a desired H/C ratio is disclosed. Organic material is biochemically digested in a two stage biodigester for separately producing a hydrogen containing biogas substantially free of methane in a first stage and a methane containing biogas in a second stage. The methane containing biogas is reformed in a first reformer to generate hydrogen gas and carbon monoxide gas, which are then combined in a mixer with the hydrogen containing biogas into a syngas in amounts to achieve in the syngas an overall H/C ratio substantially equal to the desired H/C ratio. The syngas is reacted with a catalyst in a second reformer, a Fischer-Tropsch (FT) reactor, to produce the hydrocarbon. Using a two stage biodigester allows for the generation of separate hydrogen and methane streams, a more economical generation of the FT syngas and reduced fouling of the FT catalyst.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: November 14, 2017
    Assignee: GreenField Specialty Alcohols Inc.
    Inventors: Richard Romeo Lehoux, Hisham Mohamed Hafez, Ranjit Sehdev, Dave Salt
  • Patent number: 9765367
    Abstract: A method for producing H2, methane, VFAs and alcohols from organic material, including the steps of introducing organic material and microorganisms into a completely mixed bioreactor for producing H2, CO2, VFAs, and alcohols; recovering H2 and CO2; recovering a first liquid effluent including microorganisms, VFAs, and alcohols; introducing the first liquid effluent into a gravity settler for separating into a first biomass including microorganisms and a second liquid effluent including VFAs, alcohols and microorganisms; introducing the second liquid effluent into a separation module for separating into a second biomass including microorganisms and a third liquid effluent including VFAs and alcohols; recovering at least a portion of the third liquid effluent; and providing a recovered biomass by recovering at least a portion of the first biomass, the second biomass, or both, and introducing the recovered biomass into a biomethanator for production of CH4 and CO2.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: September 19, 2017
    Assignee: GREENFIELD SPECIALTY ALCOHOLS INC.
    Inventor: Hisham Mohamed Hafez
  • Publication number: 20160333379
    Abstract: A method for producing hydrogen from organic material. Organic material and hydrogen-producing microorganisms are provided in a completely mixed bioreactor for breaking down the organic material into H2, CO2, fatty acids, and alcohols. H2, CO2, and a first liquid effluent are recovered from the completely mixed bioreactor. The first liquid effluent includes hydrogen-producing microorganisms, fatty acids, and alcohols. The first liquid effluent is provided into a gravity settler for separating the first liquid effluent into a concentrated biomass (including hydrogen-producing microorganisms) and a second liquid effluent (including at least a portion of the fatty acids and the alcohols). The concentrated biomass is provided into the completely mixed bioreactor. An input voltage is applied to at least one of the completely mixed bioreactor and the gravity settler for facilitating an electrohydrogenesis process therein.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventor: Hisham Mohamed HAFEZ
  • Patent number: 9458474
    Abstract: A method for producing hydrogen from organic material. Organic material and hydrogen-producing microorganisms are provided in a completely mixed bioreactor for breaking down the organic material into H2, CO2, fatty acids, and alcohols. H2, CO2, and a first liquid effluent are recovered from the completely mixed bioreactor. The first liquid effluent includes hydrogen-producing microorganisms, fatty acids, and alcohols. The first liquid effluent is provided into a gravity settler for separating the first liquid effluent into a concentrated biomass (including hydrogen-producing microorganisms) and a second liquid effluent (including at least a portion of the fatty acids and the alcohols). The concentrated biomass is provided into the completely mixed bioreactor. An input voltage is applied to at least one of the completely mixed bioreactor and the gravity settler for facilitating an electrohydrogenesis process therein.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 4, 2016
    Assignee: GREENFIELD SPECIALTY ALCOHOLS INC.
    Inventor: Hisham Mohamed Hafez
  • Publication number: 20160186072
    Abstract: A process and system for producing a synthetic hydrocarbon having a desired H/C ratio is disclosed. Organic material is biochemically digested in a two stage biodigester for separately producing a hydrogen containing biogas substantially free of methane in a first stage and a methane containing biogas in a second stage. The methane containing biogas is reformed in a first reformer to generate hydrogen gas and carbon monoxide gas, which are then combined in a mixer with the hydrogen containing biogas into a syngas in amounts to achieve in the syngas an overall H/C ratio substantially equal to the desired H/C ratio. The syngas is reacted with a catalyst in a second reformer, a Fischer-Tropsch (FT) reactor, to produce the hydrocarbon. Using a two stage biodigester allows for the generation of separate hydrogen and methane streams, a more economical generation of the FT syngas and reduced fouling of the FT catalyst.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 30, 2016
    Inventors: Richard Romeo LEHOUX, Hisham Mohamed HAFEZ, Ranjit SEHDEV, Dave SALT
  • Publication number: 20160186218
    Abstract: A method for producing H2, methane, VFAs and alcohols from organic material, including the steps of introducing organic material and microorganisms into a completely mixed bioreactor for producing H2, C02, VFAs, and alcohols; recovering H2 and C02; recovering a first liquid effluent including microorganisms, VFAs, and alcohols; introducing the first liquid effluent into a gravity settler for separating into a first biomass including microorganisms and a second liquid effluent including VFAs, alcohols and microorganisms; introducing the second liquid effluent into a separation module for separating into a second biomass including microorganisms and a third liquid effluent including VFAs and alcohols; recovering at least a portion of the third liquid effluent; and providing a recovered biomass by recovering at least a portion of the first biomass, the second biomass, or both, and introducing the recovered biomass into a biomethanator for production of CH4 and C02.
    Type: Application
    Filed: July 25, 2014
    Publication date: June 30, 2016
    Inventor: Hisham Mohamed Hafez
  • Patent number: 9303242
    Abstract: The present invention provides a system that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The system includes a continuously stirred bioreactor (CSTR) for biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: April 5, 2016
    Assignee: Greenfield Specailty Alcohols Inc.
    Inventors: Hisham Mohamed Hafez, Mohamed Hesham El Naggar, George F. Nakhla
  • Publication number: 20160068794
    Abstract: The present invention provides a system that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The system includes a continuously stirred bioreactor (CSTR) for biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 10, 2016
    Inventors: Hisham Mohamed Hafez, Mohamed Hesham El Naggar, George F. Nakhla
  • Publication number: 20150111273
    Abstract: A method for producing H2, VFAs and alcohols from organic material is disclosed, including the steps of introducing organic material and microorganisms into a completely mixed bioreactor for producing H2, CO2, VFAs, and alcohols; sequestering CO2 in the headspace of the reactor; recovering H2 from the headspace; and recovering a first liquid effluent including microorganisms, VFAs, and alcohols. Also disclosed is a system for producing H2, VFAs and alcohols from organic material, including a completely mixed bioreactor for dark fermentation; an input for supplying microorganisms and the organic material to be broken down; a CO2 trap in the headspace and including a solid hydroxide for sequestration of the CO2 gas from the headspace; and a gas output for removal of a gas effluent including H2 gas from the headspace. The system and method provide higher H2 production rates and a H2 stream is substantially free of CO2.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 23, 2015
    Inventor: Hisham Mohamed HAFEZ
  • Publication number: 20140370587
    Abstract: The present invention provides a system that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The system includes a continuously stirred bioreactor (CSTR) for biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Inventors: Hisham Mohamed HAFEZ, Mahamed Hesham EL NAGGAR, George F. NAKHLA
  • Patent number: 8900840
    Abstract: The present invention provides a system that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The system includes a continuously stirred bioreactor (CSTR) for biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: December 2, 2014
    Assignee: The University of Western Ontario
    Inventors: Hisham Mohamed Hafez, Mohamed Hesham El Naggar, George F. Nakhla
  • Publication number: 20120009643
    Abstract: The present invention provides a system that has been devised to overcome the two most important limitations for sustained biological hydrogen production, namely contamination of the microbial hydrogen-producing cultures with methane-producing cultures necessitating frequent re-start-up and/or other methanogenic bacteria inactivation techniques, and the low bacterial yield of hydrogen-producers culminating in microbial washout from the system and failure. The system includes a continuously stirred bioreactor (CSTR) for biological hydrogen production, followed by a gravity settler positioned downstream of the CSTR, which combination forms a biohydrogenator. The biomass concentration in the hydrogen reactor is kept at the desired range through biomass recirculation from the bottom of the gravity settler and/or biomass wastage from the gravity settler's underflow.
    Type: Application
    Filed: February 1, 2010
    Publication date: January 12, 2012
    Applicant: THE UNIVERSITY OF WESTERN ONTARIO
    Inventors: Hisham Mohamed Hafez, Mohamed Hesham El Naggar, George F. Nakhla