Patents by Inventor Hitoshi Ishimoto

Hitoshi Ishimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10714761
    Abstract: A fuel cell catalyst layer includes a plurality of carbon particles, a plurality of catalyst particles, and at least one plate-shaped carbon member disposed between the plurality of carbon particles. The plurality of catalyst particles are supported on surfaces of the plurality of carbon particles. The plate-shaped carbon member may be replaced with a rod-shaped carbon member.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 14, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kazuya Yamasaki, Hitoshi Ishimoto, Masashi Shoji, Keiichi Kondou
  • Patent number: 10388966
    Abstract: An electrode catalyst material includes graphite particles and catalyst particles. Each of the graphite particles has a hollow structure that includes an outer shell, and the outer shell has at least one of a through-hole and a recess. Each of the catalyst particles is supported by the at least one of through-hole and recess.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 20, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Keiichi Kondou, Kazuya Yamasaki, Hitoshi Ishimoto
  • Publication number: 20190198906
    Abstract: Provided is a fuel cell catalyst layer including: a fibrous carbon material; catalyst particles; a particulate carbon material; and a proton-conductive resin, wherein a region A including at least the fibrous carbon material in a state of an agglomerated body and a region B including at least the catalyst particles, the particulate carbon material, and the proton-conductive resin are formed, the region A being disposed in an island form in the region B.
    Type: Application
    Filed: September 5, 2017
    Publication date: June 27, 2019
    Inventors: Motohiro SAKATA, Takeshi MINAMIURA, Shinichiro IMURA, Hitoshi ISHIMOTO, Kazuya YAMASAKI, Chiho NOBUMORI, Yukihiro SHIMASAKI, Tsutomu FUJII
  • Publication number: 20190181480
    Abstract: Provided is a membrane electrode assembly capable of keeping contact resistance between a catalyst layer and a gas diffusion layer (GDL) low. The membrane electrode assembly includes an electrolyte membrane and a pair of electrode layers disposed to sandwich the electrolyte membrane. The pair of electrode layers includes a pair of catalyst layers disposed to sandwich the electrolyte membrane, and a pair of GDLs disposed on opposite sides of the electrolyte membrane on the respective pair of catalyst layers. Each of the pair of GDLs includes a plurality of GDL protrusions that protrude on a catalyst layer side from the GDL and enter in the catalyst layer, and a gas flow path formed on an opposite side of the catalyst layer. Each of the pair of catalyst layers has a plurality of catalyst layer recesses in contact with the respective plurality of GDL protrusions.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Inventors: MASASHI SHOJI, HITOSHI ISHIMOTO, SHINICHIRO IMURA, HIROAKI SUZUKI
  • Publication number: 20180083291
    Abstract: An electrode catalyst material includes graphite particles and catalyst particles. Each of the graphite particles has a hollow structure that includes an outer shell, and the outer shell has at least one of a through-hole and a recess. Each of the catalyst particles is supported by the at least one of through-hole and recess.
    Type: Application
    Filed: November 28, 2017
    Publication date: March 22, 2018
    Inventors: Keiichi Kondou, Kazuya Yamasaki, Hitoshi Ishimoto
  • Patent number: 9853174
    Abstract: A photoelectric conversion element includes a first electrode layer, a photoelectric conversion layer, and a second electrode layer. The first electrode layer includes a first base member, and a rough layer formed on the first base member. The photoelectric conversion layer is formed on the rough layer, and the second electrode layer is formed above the photoelectric conversion layer. The rough layer includes a plurality of metal fine particles irregularly connected together and to a surface of the first base member, and the photoelectric conversion layer infiltrates among the plurality of metal fine particles constituting the rough layer.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 26, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuta Moriura, Hitoshi Ishimoto
  • Publication number: 20170365862
    Abstract: A fuel cell catalyst layer includes a plurality of carbon particles, a plurality of catalyst particles, and at least one plate-shaped carbon member disposed between the plurality of carbon particles. The plurality of catalyst particles are supported on surfaces of the plurality of carbon particles. The plate-shaped carbon member may be replaced with a rod-shaped carbon member.
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Inventors: KAZUYA YAMASAKI, HITOSHI ISHIMOTO, MASASHI SHOJI, KEIICHI KONDOU
  • Patent number: 9373448
    Abstract: A method of manufacturing an electrolytic capacitor includes preparing a dielectric film formed on a surface of an anode foil, forming a first conductive polymer layer on a surface of the dielectric film by immersing the anode foil in first dispersion solution including conductive polymer particles and forming a second conductive polymer layer covering the first conductive polymer layer solvent by immersing the anode foil in second dispersion solution including second conductive polymer particles and second solvent. The surface of the anode foil has plural pits formed therein. The second dispersion solution has a pH value farther from 7 than the first dispersion solution does. This configuration can suppress damages to the dielectric film.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 21, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Ryo Majima, Hitoshi Ishimoto, Tatsuji Aoyama
  • Publication number: 20150318417
    Abstract: A photoelectric conversion element includes a first electrode layer, a photoelectric conversion layer, and a second electrode layer. The first electrode layer includes a first base member, and a rough layer formed on the first base member. The photoelectric conversion layer is formed on the rough layer, and the second electrode layer is formed above the photoelectric conversion layer. The rough layer includes a plurality of metal fine particles irregularly connected together and to a surface of the first base member, and the photoelectric conversion layer infiltrates among the plurality of metal fine particles constituting the rough layer.
    Type: Application
    Filed: November 18, 2013
    Publication date: November 5, 2015
    Inventors: YUTA MORIURA, HITOSHI ISHIMOTO
  • Patent number: 9001497
    Abstract: An electrode foil includes a substrate and a coarse film layer having a void therein and formed on the substrate. The coarse film layer includes at least a first coarse film layer formed on the substrate. The first coarse film layer is composed of arrayed first columnar bodies. Each of the first columnar bodies is composed of metallic microparticles stacked on a surface of the substrate and extending in a curve from the surface of the substrate.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Akiyoshi Oshima, Hiroki Kamiguchi, Masashi Shoji, Hitoshi Ishimoto
  • Patent number: 8971022
    Abstract: An electrode foil including a substrate made of metal material, a first layer made of metal oxide and formed on the substrate, a second layer made of TiNxOy (x>y>0) and formed on the first layer, and a third layer made of TiNxOy (0<x<y) and formed on the second layer.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Panasonic Corporation
    Inventors: Hitoshi Ishimoto, Masashi Shoji, Hiroki Kamiguchi
  • Patent number: 8749954
    Abstract: Electrode foil includes an aluminum alloy having a composition in a region at least 10 ?m deep from a surface of the foil. The composition includes aluminum as a main component and zirconium of at least 0.03 at % and at most 0.5 at %.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 10, 2014
    Assignee: Panasonic Corporation
    Inventors: Masashi Shoji, Hitoshi Ishimoto, Ayumi Kochi, Tomohiro Maruoka, Naomi Kurihara, Takao Sato
  • Patent number: 8654509
    Abstract: An electrode-foil includes a foil having a metal layer on the surface thereof, a first dielectric film formed on the metal layer, and a second dielectric film formed on the first dielectric film. The first dielectric film is composed of a metal oxide of a metal constituting the metal layer. The thickness of the first dielectric film is greater than 0 nm and less than 10 nm. The second dielectric film is predominantly composed of a metal compound different from the metal oxide of the first dielectric film.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: February 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Hitoshi Ishimoto, Masashi Shoji
  • Publication number: 20140036416
    Abstract: An electrode foil including a substrate made of metal material, a first layer made of metal oxide and formed on the substrate, a second layer made of TiNxOy (x>y>0) and formed on the first layer, and a third layer made of TiNxOy (0<x<y) and formed on the second layer.
    Type: Application
    Filed: May 14, 2012
    Publication date: February 6, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Hitoshi Ishimoto, Masashi Shoji, Hiroki Kamiguchi
  • Publication number: 20130059064
    Abstract: A method of manufacturing an electrolytic capacitor includes preparing a dielectric film formed on a surface of an anode foil, forming a first conductive polymer layer on a surface of the dielectric film by immersing the anode foil in first dispersion solution including conductive polymer particles and forming a second conductive polymer layer covering the first conductive polymer layer solvent by immersing the anode foil in second dispersion solution including second conductive polymer particles and second solvent. The surface of the anode foil has plural pits formed therein. The second dispersion solution has a pH value farther from 7 than the first dispersion solution does. This configuration can suppress damages to the dielectric film.
    Type: Application
    Filed: March 7, 2012
    Publication date: March 7, 2013
    Inventors: Ryo Majima, Hitoshi Ishimoto, Tatsuji Aoyama
  • Patent number: 8248200
    Abstract: In an inductance component, a stress is not locally applied even in the condition where heat is applied to entire component, such as when implementing soldering, so that high reliability is realized. For realizing this, the component includes an element, a coil formed in the element, terminals electrically connected to the coil, and magnetic layers arranged so as to be substantially parallel to a winding surface of the coil are formed in the element and the entirety of the magnetic layers is covered with a material of which thermal expansion and contraction rate is uniform.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: August 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Hitoshi Ishimoto, Nobuya Matsutani, Hidenori Uematsu, Koji Shimoyama, Michio Ohba, Mikio Taoka
  • Publication number: 20120200985
    Abstract: Electrode foil includes an aluminum alloy having a composition in a region at least 10 ?m deep from a surface of the foil. The composition includes aluminum as a main component and zirconium of at least 0.03 at % and at most 0.5 at %.
    Type: Application
    Filed: October 19, 2010
    Publication date: August 9, 2012
    Inventors: Masashi Shoji, Hitoshi Ishimoto, Ayumi Kochi, Tomohiro Maruoka, Naomi Kurihara, Takao Sato
  • Publication number: 20120176727
    Abstract: An electrode-foil includes a foil having a metal layer on the surface thereof, a first dielectric film formed on the metal layer, and a second dielectric film formed on the first dielectric film. The first dielectric film is composed of a metal oxide of a metal constituting the metal layer. The thickness of the first dielectric film is greater than 0 nm and less than 10 nm. The second dielectric film is predominantly composed of a metal compound different from the metal oxide of the first dielectric film.
    Type: Application
    Filed: February 7, 2011
    Publication date: July 12, 2012
    Inventors: Hitoshi Ishimoto, Masashi Shoji
  • Publication number: 20120170173
    Abstract: An electrode foil includes a substrate and a coarse film layer having a void therein and formed on the substrate. The coarse film layer includes at least a first coarse film layer formed on the substrate. The first coarse film layer is composed of arrayed first columnar bodies. Each of the first columnar bodies is composed of metallic microparticles stacked on a surface of the substrate and extending in a curve from the surface of the substrate.
    Type: Application
    Filed: March 14, 2011
    Publication date: July 5, 2012
    Inventors: Akiyoshi Oshima, Hiroki Kamiguchi, Masashi Shoji, Hitoshi Ishimoto
  • Publication number: 20100182116
    Abstract: In an inductance component, a stress is not locally applied even in the condition where heat is applied to entire component, such as when implementing soldering, so that high reliability is realized. For realizing this, the component includes element (5), coil (6) formed in element (5), terminals (7, 8) electrically connected to coil (6), and magnetic layers (9A, 9B) arranged so as to be substantially parallel to a winding surface of coil (6) are formed in element (5) and entire magnetic layers (9A, 9B) is covered with a material of which thermal expansion and contraction rates are constant.
    Type: Application
    Filed: March 19, 2007
    Publication date: July 22, 2010
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Hitoshi Ishimoto, Nobuya Matsutani, Hidenori Uematsu, Koji Shimoyama, Michio Ohba, Mikio Taoka