Patents by Inventor Hitoshi Kitaguchi

Hitoshi Kitaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117483
    Abstract: The problem addressed by the present invention is to provide a copper-coated aluminum wire material with a reduced weight and excellent adhesiveness, and a production method therefor. This copper-coated aluminum wire material is provided with an aluminum wire material comprising aluminum or an aluminum alloy and a thin copper film covering the aluminum wire material. The space factor of the thin copper film is in the range of 0.2% to 4% and the adhesiveness between the aluminum wire material and the thin copper film based on a scratch test compliant with JIS R 3255 is at least 10 mN.
    Type: Application
    Filed: February 28, 2022
    Publication date: April 11, 2024
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Akihiro KIKUCHI, Hitoshi KITAGUCHI, Yasuo IIJIMA, Kazuto HIRATA
  • Patent number: 8173579
    Abstract: In a fabrication method of a MgB2 superconducting tape and wire by filling a tube with a MgB2 superconducting powder and forming it into a tape or wire, a fabrication method of a MgB2 superconducting tape (and wire) which is characterized by using a MgB2 superconducting powder having a high critical current density (Jc) owing to its lowered crystallinity and having potential for excellent grain connectivity as the MgB2 superconducting powder. Provided are a fabrication method of a MgB2 superconducting tape and wire which can fabricate a MgB2 superconducting tape and wire having a level of Jc sufficiently high for practical applications and homogeneous quality throughout its length by an ex-situ process employing a material of the composition suitable for its working environment as the sheath material, and a MgB2 superconducting tape and wire thereby fabricated.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: May 8, 2012
    Assignee: National Institute for Materials Science
    Inventors: Takayuki Nakane, Hitoshi Kitaguchi, Hiroki Fujii, Hiroaki Kumakura
  • Patent number: 7763568
    Abstract: The present invention provides a method for producing a MgB2 superconductor, comprising compacting and heating a mixture comprising Mg or MgH2 powder and B powder, wherein said mixture comprises SiC powder and an aromatic hydrocarbon, and a MgB2 superconductor having a higher critical current density (Jc) than that of the known MgB2 superconductors added SiC only or added an aromatic hydrocarbon only such as benzene.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 27, 2010
    Assignees: National Institute for Materials Science, Central Japan Railway Company
    Inventors: Hideyuki Yamada, Nobuhito Uchiyama, Hiroaki Kumakura, Hitoshi Kitaguchi, Akiyoshi Matsumoto
  • Patent number: 7749939
    Abstract: By adding an aromatic hydrocarbon such as benzene to the powder mixture of magnesium (Mg) or magnesium hydride (MgH2) and boron (B) as raw materials of a superconductor MgB2, high superconducting critical current density (Jc) is obtained.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: July 6, 2010
    Assignees: National Institute for Materials Science, Central Japan Railway Company
    Inventors: Hiroaki Kumakura, Hitoshi Kitaguchi, Masazumi Hirakawa, Hideyuki Yamada
  • Patent number: 7569520
    Abstract: In a metal sheath MgB2 superconducting wire, it is intended to achieve a wire having increased current density and a long length at the same time, by densitying superconducting core part. The superconducting wire is manufactured by forming diffusion hardened layer on the inner surface of the sheath such that the hardness of the inner surface becomes higher than that of the outer surface, filling MgB2 superconductor, and further if necessary, a critical current density increasing material such as indium, copper, and tin, in a metal sheath, to subject it to wire drawing. For the metal sheath, a material with toughness such as steel is used. Even if the sheath is made to a long wire, it does not break, thereby, enabling to density superconducting core part.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: August 4, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Kazuhide Tanaka, Masaya Takahashi, Michiya Okada, Hiroaki Kumakura, Hitoshi Kitaguchi
  • Publication number: 20090170710
    Abstract: In a metal sheath MgB2 superconducting wire, it is intended to achieve a wire having increased current density and a long length at the same time, by densitying superconducting core part. The superconducting wire is manufactured by forming diffusion hardened layer on the inner surface of the sheath such that the hardness of the inner surface becomes higher than that of the outer surface, filling MgB2 superconductor, and further if necessary, a critical current density increasing material such as indium, copper, and tin, in a metal sheath, to subject it to wire drawing. For the metal sheath, a material with toughness such as steel is used. Even if the sheath is made to a long wire, it does not break, thereby, enabling to density superconducting core part.
    Type: Application
    Filed: February 3, 2006
    Publication date: July 2, 2009
    Inventors: Kazuhide Tanaka, Masaya Takahashi, Michiya Okada, Hiroaki Kumakura, Hitoshi Kitaguchi
  • Publication number: 20090156410
    Abstract: In a fabrication method of a MgB2 superconducting tape and wire by filling a tube with a MgB2 superconducting powder and forming it into a tape or wire, a fabrication method of a MgB2 superconducting tape (and wire) which is characterized by using a MgB2 superconducting powder having a high critical current density (Jc) owing to its lowered crystallinity and having potential for excellent grain connectivity as the MgB2 superconducting powder. Provided are a fabrication method of a MgB2 superconducting tape and wire which can fabricate a MgB2 superconducting tape and wire having a level of Jc sufficiently high for practical applications and homogeneous quality throughout its length by an ex-situ process employing a material of the composition suitable for its working environment as the sheath material, and a MgB2 superconducting tape and wire thereby fabricated.
    Type: Application
    Filed: October 24, 2006
    Publication date: June 18, 2009
    Inventors: Takayuki Nakane, Hitoshi Kitaguchi, Hiroki Fujii, Hiroaki Kumakura
  • Publication number: 20080274902
    Abstract: The present invention provides a method for producing a MgB2 superconductor, comprising compacting and heating a mixture comprising Mg or MgH2 powder and B powder, wherein said mixture comprises SiC powder and an aromatic hydrocarbon, and a MgB2 superconductor having a higher critical current density (Jc) than that of the known MgB2 superconductors added SiC only or added an aromatic hydrocarbon only such as benzene.
    Type: Application
    Filed: February 20, 2008
    Publication date: November 6, 2008
    Inventors: Hideyuki Yamada, Nobuhito Uchiyama, Hiroaki Kumakura, Hitoshi Kitaguchi, Akiyoshi Matsumoto
  • Publication number: 20070054810
    Abstract: By adding an aromatic hydrocarbon such as benzene to the powder mixture of magnesium (Mg) or magnesium hydride (MgH2) and boron (B) as raw materials of a superconductor MgB2, high superconducting critical current density (Jc) is obtained.
    Type: Application
    Filed: August 25, 2006
    Publication date: March 8, 2007
    Inventors: Hiroaki Kumakura, Hitoshi Kitaguchi, Masazumi Hirakawa, Hideyuki Yamada
  • Publication number: 20040121915
    Abstract: The invention provides a superconducting wire rod which is filled with or interiorly includes a superconductor containing a boron, wherein the superconducting wire rod has a practical critical electric density even under a magnetic field. In a superconducting wire rod filled with or interiorly including a superconductor containing a boron, a metal powder is added to a superconducting material included in the superconducting wire rod, the metal powder is selected from at least one of an indium, a tin, a lead, an iron, a magnesium and an aluminum, the metal power having an average grain diameter equal to or less than 20 &mgr;m is 5 to 25 vol % dispersed in the superconducting material, a density of the superconducting material included in the superconducting wire rod after a final work is equal to or more than 90% a theoretical density, and a critical current density is equal to or more than 1000 A/cm2.
    Type: Application
    Filed: August 19, 2003
    Publication date: June 24, 2004
    Applicants: Hitachi, Ltd., Independent Administrative Institute National Institute for Materials Science
    Inventors: Kazuhide Tanaka, Michiya Okada, Hiroaki Kumakura, Hitoshi Kitaguchi, Kazumasa Tokano
  • Patent number: 6569813
    Abstract: A method of producing a composite material of a bismuth 2212 phase and a metallic substrate, wherein the first and second baking are conducted as an isothermal heat treatment. According to this process, temperature control is easy, high productivity is obtained, and the critical current density is improved.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: May 27, 2003
    Assignee: Japan as represented by Director General of National Research Institute for Metals
    Inventors: Hitoshi Kitaguchi, Hirohaki Kumakura, Kazumasa Togano
  • Publication number: 20010007849
    Abstract: A method of producing a composite material of a bismuth 2212 phase and a metallic substrate, wherein the first and second baking are conducted as an isothermal heat treatment.
    Type: Application
    Filed: January 22, 2001
    Publication date: July 12, 2001
    Inventors: Hitoshi Kitaguchi, Hirohaki Kumakura, Kazumasa Togano
  • Patent number: 6240620
    Abstract: In a process in which a composite consisting of a metallic base and a superconductor mainly containing a Bi2Sr2CaCu2Ox superconducting phase is formed into a composite wire or wire, the composite is subjected to calcination and cold working before heat treatment for crystallization from a partial molten state.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: June 5, 2001
    Assignee: National Research Institute for Metals
    Inventors: Hitoshi Kitaguchi, Hanping Miao, Hiroaki Kumakura, Kazumasa Togano