Patents by Inventor Hitoshi Mikada

Hitoshi Mikada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069231
    Abstract: A method of processing seismic data by a reflection seismic survey includes: calculating a first pseudo-water-surface reflection wave by virtually propagating a direct wave represented in the seismic data in a progressing direction of a time axis by a time in which the acoustic wave propagates in the water at a distance twice a depth of the seismic source, and further correcting an amplitude of the direct wave so that the amplitude is approximated to an amplitude of a water-surface reflection wave of the acoustic wave represented is the seismic data; and subtracting a component corresponding to the first pseudo-water-surface reflection wave from the seismic data.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicants: IHI Corporation
    Inventors: Hiroaki OZASA, Hitoshi MIKADA
  • Patent number: 9726773
    Abstract: A subaqueous underground survey system using a reflection seismic survey method includes: multiple sound sources 1 for generating sound waves in the water; a controller 2 for controlling phases of the sound waves; a geophone 3 for receiving reflected waves of the sound waves; and an observation ship 4 equipped with the sound sources 1, wherein the controller 2 controls phases of the sound sources 1 so that the sound waves generated from the respective sound sources 1 have a phase difference at a water bottom surface B, thereby controlling generation of shear waves to propagate into the ground.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: August 8, 2017
    Assignees: IHI CORPORATION
    Inventors: Hitoshi Mikada, Hiroaki Ozasa, Fumio Sato, Shigeki Nagaya, Akio Yamanishi
  • Publication number: 20150331128
    Abstract: A subaqueous underground survey system using a reflection seismic survey method includes: multiple sound sources 1 for generating sound waves in the water; a controller 2 for controlling phases of the sound waves; a geophone 3 for receiving reflected waves of the sound waves; and an observation ship 4 equipped with the sound sources 1, wherein the controller 2 controls phases of the sound sources 1 so that the sound waves generated from the respective sound sources 1 have a phase difference at a water bottom surface B, thereby controlling generation of shear waves to propagate into the ground.
    Type: Application
    Filed: July 17, 2015
    Publication date: November 19, 2015
    Applicants: IHI CORPORATION
    Inventors: Hitoshi MIKADA, Hiroaki OZASA, Fumio SATO, Shigeki NAGAYA, Akio YAMANISHI
  • Patent number: 7768698
    Abstract: A Raman amplifier includes a pumping light source, an optical coupler, and a Raman amplifier medium. The pumping light source outputs a pumping light that is intensity-modulated with a frequency equal to or higher than 100 megahertz. The optical coupler couples the pumping light with a carrier light. The Raman amplification medium is pumped by the pumping light to amplify the carrier light. The Raman amplification medium has characteristics of a low dispersion and a small difference between propagation times of the carrier light and the pumping light.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: August 3, 2010
    Assignees: Independent Administrative Institution, Japan Agency for Marine-Earth Science and Technology, Mitsubishi Electric Corporation
    Inventors: Toshiyuki Tokura, Katsuhiro Shimizu, Tasuku Fujieda, Ken'ichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Patent number: 7539413
    Abstract: The present invention discloses a submarine observation system in which a plurality of carrier lights assigned to each submarine observation equipment is transmitted from a land terminal apparatus to an optical submarine cable (down-going) by using a WDM transmission. In the submarine observation equipment, only a prescribed carrier light is demultiplexed by an optical demultiplexer, an observation signal indicating an observation result is generated by an observation device, intensity of the carrier light demultiplexed by the optical demultiplexer is modulated by an optical amplifier based on an observation signal, and the modulated carrier light is multiplexed by an optical multiplexer. The multiplexed carrier light is output to the optical submarine cable (up-going) to be returned to the land terminal apparatus being the transmission station.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: May 26, 2009
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Independent Administrative Institution, Japan Agency for Marine-Earth Science and Technology
    Inventors: Hiroaki Munehira, Junichi Nakagawa, Toshiyuki Tokura, Kenichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Patent number: 7437070
    Abstract: In each of a plurality of submarine observation apparatus (1 to n), a branching unit (63) branches fixed-wavelength light (?1) from an incoming wavelength-multiplexed light signal. An observation signal modulating unit (64) modulates the intensity of the branched fixed-wavelength light (?1) with observation information multiplexed by an observation signal multiplex unit (61). A combining unit (65) combines light signals (?2) to (?n) passing through the branching unit (63) and the fixed-wavelength light (?1a) modulated by the observation signal modulating unit (64) into a composite light signal, and outputs it to an optical fiber (12a). Therefore, in each of the plurality of submarine observation apparatus (1 to n), there is no necessity for providing a wavelength-division-multiplexing-transmission optical transmitter which requires high wavelength stability.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 14, 2008
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Japan Agency for Marine-Earth Science and Technology
    Inventors: Tasuku Fujieda, Hideki Goto, Kenichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Publication number: 20080013161
    Abstract: A Raman amplifier includes a pumping light source, an optical coupler, and a Raman amplifier medium. The pumping light source outputs a pumping light that is intensity-modulated with a frequency equal to or higher than 100 megahertz. The optical coupler couples the pumping light with a carrier light. The Raman amplification medium is pumped by the pumping light to amplify the carrier light. The Raman amplification medium has characteristics of a low dispersion and a small difference between propagation times of the carrier light and the pumping light.
    Type: Application
    Filed: August 30, 2004
    Publication date: January 17, 2008
    Applicants: INDEPENDENT ADMINISTRATIVE INSTITUTION, JAPAN AGENCY FOR MARINE-EARTH SCIENCE AND TECHNOLOGY, MITSUBISHI ELECTRIC CORPORATION
    Inventors: Toshiyuki Tokura, Katsuhiro Shimizu, Tasuku Fujieda, Ken'ichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Publication number: 20050259264
    Abstract: The present invention discloses a submarine observation system in which a plurality of carrier lights assigned to each submarine observation equipment is transmitted from a land terminal apparatus to an optical submarine cable (down-going) by using a WDM transmission. In the submarine observation equipment, only a prescribed carrier light is demultiplexed by an optical demultiplexer, an observation signal indicating an observation result is generated by an observation device, intensity of the carrier light demultiplexed by the optical demultiplexer is modulated by an optical amplifier based on an observation signal, and the modulated carrier light is multiplexed by an optical multiplexer. The multiplexed carrier light is output to the optical submarine cable (up-going) to be returned to the land terminal apparatus being the transmission station.
    Type: Application
    Filed: March 14, 2005
    Publication date: November 24, 2005
    Applicants: MITSUBISHI DENKI KABUSHIKI KAISHA, Japan Agency for Marine-Earth Science and Tech.
    Inventors: Hiroaki Munehira, Junichi Nakagawa, Toshiyuki Tokura, Kenichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Publication number: 20050259998
    Abstract: In each of a plurality of submarine observation apparatus (1 to n), a branching unit (63) branches fixed-wavelength light (?1) from an incoming wavelength-multiplexed light signal. An observation signal modulating unit (64) modulates the intensity of the branched fixed-wavelength light (?1) with observation information multiplexed by an observation signal multiplex unit (61). A combiningunit (65) combines lightsignals (?2) to (?n) passing through the branching unit (63) and the fixed-wavelength light (?1a) modulated by the observation signal modulating unit (64) into a composite light signal, and outputs it to an optical fiber (12a). Therefore, in each of the plurality of submarine observation apparatus (1 to n), there is no necessity for providing a wavelength-division-multiplexing-transmission optical transmitter which requires high wavelength stability.
    Type: Application
    Filed: February 18, 2005
    Publication date: November 24, 2005
    Applicants: MITSUBISHI DENKI KABUSHIKI KAISHA, Japan Agency for Marine-Earth Science and Tech.
    Inventors: Tasuku Fujieda, Hideki Goto, Kenichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi