Patents by Inventor Hitoshi Tsuchida

Hitoshi Tsuchida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140335441
    Abstract: A method for producing a porous metallic body at least includes a step of forming an electrically conductive coating layer on a surface of a skeleton of a three-dimensional network resin having a continuous pore by coating the surface with a coating material containing a carbon powder having a volume-average particle size of 10 ?m or less and at least one fine powder having a volume-average particle size of 10 ?m or less and selected from the group consisting of metal fine powders and metal oxide fine powders; a step of forming at least one metal plating layer; and a step of performing a heat treatment to remove the three-dimensional network resin and to cause reduction and thermal diffusion in the at least one metal or metal oxide fine powder and the at least one metal plating layer.
    Type: Application
    Filed: December 4, 2012
    Publication date: November 13, 2014
    Inventors: Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito, Junichi Nishimura
  • Publication number: 20140087206
    Abstract: Provided is a porous metal body containing at least nickel, tin, and chromium. An example of a method of producing such a porous metal body is a method including a conductive-coating-layer formation step of forming a conductive coating layer containing chromium on a surface of a porous base formed of a resin material; a metal-layer formation step of forming a nickel layer and a tin layer in any order on a surface of the conductive coating layer; a removal step of removing the porous base; and a diffusion step of, by a heat treatment, causing interdiffusion of metal atoms between the nickel layer and the tin layer and diffusing chromium contained in the conductive coating layer into the nickel layer and the tin layer.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki OKUNO, Masahiro KATO, Tomoyuki AWAZU, Masatoshi MAJIMA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Publication number: 20130295459
    Abstract: A porous metallic body has a three-dimensional network structure composed of an alloy containing at least Ni and Cr, the porous metallic body having a skeleton formed of a hollow core and a shell, in which when a cross section of the shell is evenly divided in the thickness direction into three portions, i.e., an outer portion, a central portion, and an inner portion, and when concentrations in percent by weight of Cr in the outer portion, the central portion, and the inner portions are defined as a, b, and c, a, b, and c satisfy the relation given by expression (1): |(a+c)/2?b|/(a+b+c)/3<0.
    Type: Application
    Filed: January 6, 2012
    Publication date: November 7, 2013
    Applicant: SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Junichi Nishimura, Hitoshi Tsuchida, Hidetoshi Saito
  • Publication number: 20130266862
    Abstract: Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
    Type: Application
    Filed: November 30, 2011
    Publication date: October 10, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Masatoshi Majima, Tomoyuki Awazu, Hidetoshi Saito, Junichi Nishimura, Keiji Shiraishi, Hitoshi Tsuchida, Kengo Tsukamoto
  • Patent number: 8377567
    Abstract: A porous metal member composed of an alloy at least containing nickel and tungsten is provided. The alloy may contain 50 to 80 wt % of nickel and 20 to 50 wt % of tungsten and may further contain 10 wt % or less of phosphorus and/or 10 wt % or less of boron. Such a porous metal member can be produced by, for example, making a porous base such as a urethane foam be electrically conductive, forming an alloy film containing nickel and tungsten, then removing the porous base from the alloy film, and subsequently reducing the alloy.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: February 19, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Hidetoshi Saito, Keiji Shiraishi, Hitoshi Tsuchida, Junichi Nishimura
  • Publication number: 20110287279
    Abstract: A porous metal member composed of an alloy at least containing nickel and tungsten is provided. The alloy may contain 50 to 80 wt % of nickel and 20 to 50 wt % of tungsten and may further contain 10 wt % or less of phosphorus and/or 10 wt % or less of boron. Such a porous metal member can be produced by, for example, making a porous base such as a urethane foam be electrically conductive, forming an alloy film containing nickel and tungsten, then removing the porous base from the alloy film, and subsequently reducing the alloy.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki OKUNO, Masahiro KATO, Tomoyuki AWAZU, Masatoshi MAJIMA, Hidetoshi SAITO, Keiji SHIRAISHI, Hitoshi TSUCHIDA, Junichi NISHIMURA
  • Patent number: 7998621
    Abstract: A battery electrode substrate includes a metallic porous body. The metallic porous body has a structure in which a surface of a plastic fiber in a woven or unwoven fabric is coated with a nickel film. The nickel film coats the surface with an average coverage ratio of not less than 85%.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: August 16, 2011
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Keizo Harada, Masahiro Kato, Hidetoshi Saito, Tadashi Omura, Hitoshi Tsuchida
  • Patent number: 7879496
    Abstract: A battery electrode substrate having excellent mechanical strength and flexibility and being capable of increasing the filling density of a positive electrode active substance and, thereby, achieving a higher capacity battery, a battery electrode formed from the battery electrode substrate, and an alkaline secondary battery including the battery electrode are provided. The battery electrode substrate includes a woven or unwoven fabric and nickel for coating fibers constituting the woven or unwoven fabric, wherein the weight per area of the above-described woven or unwoven fabric is 15 g/m2 or more, and 60 g/m2 or less and the thickness of the above-described woven or unwoven fabric is 1.3 mm or more, and 3.0 mm or less. The battery electrode is formed from the battery electrode substrate, and the alkaline secondary battery includes the battery electrode.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: February 1, 2011
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki Okuno, Masahiro Kato, Jin-Joo Park, Hitoshi Tsuchida, Tadashi Omura, Junichi Nishimura
  • Publication number: 20080063942
    Abstract: A battery electrode substrate having excellent mechanical strength and flexibility and being capable of increasing the filling density of a positive electrode active substance and, thereby, achieving a higher capacity battery, a battery electrode formed from the battery electrode substrate, and an alkaline secondary battery including the battery electrode are provided. The battery electrode substrate includes a woven or unwoven fabric and nickel for coating fibers constituting the woven or unwoven fabric, wherein the weight per area of the above-described woven or unwoven fabric is 15 g/m2 or more, and 60 g/m2 or less and the thickness of the above-described woven or unwoven fabric is 1.3 mm or more, and 3.0 mm or less. The battery electrode is formed from the battery electrode substrate, and the alkaline secondary battery includes the battery electrode.
    Type: Application
    Filed: August 22, 2007
    Publication date: March 13, 2008
    Applicants: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki Okuno, Masahiro Kato, Jin-Joo Park, Hitoshi Tsuchida, Tadashi Omura, Junichi Nishimura
  • Publication number: 20060159998
    Abstract: A collector that has enough hardness and flexibility and a battery electrode substrate that uses this collector are provided. Also provided is a low-cost battery electrode substrate that exhibits excellent high-rate charge/discharge characteristics and low electrical resistance and that is able to avoid the decline in cycle characteristics caused by repetitive charging/discharging. The invention is a battery electrode substrate having a structure in which a nickel film is coated on the surface of plastic fiber of a woven or unwoven fabric, wherein a metallic porous body in which the average coverage ratio by the nickel film is not less than 85% is used.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 20, 2006
    Inventors: Keizo Harada, Masahiro Kato, Hidetoshi Saito, Tadashi Omura, Hitoshi Tsuchida
  • Patent number: 5798033
    Abstract: A process for preparing a porous metallic body comprising the steps of: rendering a porous resin body electrically conductive, electroplating the conductive resin, and heating the electroplated resin to remove the resin, wherein the step of rendering the resin electrically conductive is conducted by coating the resin with a coating composition containing amorphous carbon particles as a conductive material. In the process, substantially spherical carbon particles may be used as the conductive material. The substantially spherical carbon particles are still preferably amorphous carbon. The thus obtained porous metallic body has reduced defect and more smooth skeleton in the porous body, is less likely to cause stress concentration upon application of bending and tensile force, has lower carbon content, and superior mechanical strength, and, therefore, the substrate is suitable as an electrode substrate for batteries.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: August 25, 1998
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Industries Toyama Co., Ltd., Nippon Graphite Industries, Ltd.
    Inventors: Takafumi Uemiya, Hitoshi Tsuchida, Masayuki Furukawa, Kazuo Yamazaki, Tadashi Dohi
  • Patent number: D342252
    Type: Grant
    Filed: July 14, 1992
    Date of Patent: December 14, 1993
    Assignee: NEC Corporation
    Inventors: Masafuku Akatsu, Akira Abe, Hitoshi Tsuchida, Seizo Ohta, Takeshi Nakatani
  • Patent number: D345557
    Type: Grant
    Filed: July 14, 1992
    Date of Patent: March 29, 1994
    Assignee: NEC Corporation
    Inventors: Masafuku Akatsu, Akira Abe, Hitoshi Tsuchida, Seizo Ohta, Takeshi Nakatani