Patents by Inventor Hiuling Zoe YU
Hiuling Zoe YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240234705Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: ApplicationFiled: September 25, 2023Publication date: July 11, 2024Inventors: Naoki OTA, Mihai DUDUTA, Takaaki FUKUSHIMA, Hiuling Zoe YU, Taison TAN, Hiromitsu MISHIMA
-
Patent number: 11876194Abstract: Embodiments described herein relate generally to methods for the remediation of electrochemical cell electrodes. In some embodiments, a method includes obtaining an electrode material. At least a portion of the electrode material is rinsed to remove a residue therefrom. The electrode material is separated into constituents for reuse.Type: GrantFiled: July 9, 2021Date of Patent: January 16, 2024Assignee: 24M Technologies, Inc.Inventors: Yet-Ming Chiang, William Henry Woodford, Hiuling Zoe Yu
-
Patent number: 11804595Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: GrantFiled: October 16, 2019Date of Patent: October 31, 2023Assignees: 24M Technologies, Inc., Kyocera CorporationInventors: Naoki Ota, Mihai Duduta, Takaaki Fukushima, Hiuling Zoe Yu, Taison Tan, Hiromitsu Mishima
-
Publication number: 20220173446Abstract: Embodiments described herein relate generally to methods for the remediation of electrochemical cell electrodes. In some embodiments, a method includes obtaining an electrode material. At least a portion of the electrode material is rinsed to remove a residue therefrom. The electrode material is separated into constituents for reuse.Type: ApplicationFiled: July 9, 2021Publication date: June 2, 2022Applicant: 24M Technologies, Inc.Inventors: Yet-Ming CHIANG, William Henry WOODFORD, Hiuling Zoe YU
-
Patent number: 11094976Abstract: Embodiments described herein relate generally to methods for the remediation of electrochemical cell electrodes. In some embodiments, a method includes obtaining an electrode material. At least a portion of the electrode material is rinsed to remove a residue therefrom. The electrode material is separated into constituents for reuse.Type: GrantFiled: July 31, 2019Date of Patent: August 17, 2021Assignee: 24M Technologies, Inc.Inventors: Yet-Ming Chiang, William Woodford, Hiuling Zoe Yu
-
Publication number: 20200106094Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: ApplicationFiled: October 16, 2019Publication date: April 2, 2020Inventors: Naoki OTA, Mihai DUDUTA, Takaaki FUKUSHIMA, Hiuling Zoe YU, Taison TAN, Hiromitsu MISHIMA
-
Patent number: 10593952Abstract: Embodiments described herein relate generally to electrodes for electrochemical cells, the electrodes including an electrode material disposed on a current collector. In some embodiments, an electrode includes an edge protection barrier member on a perimeter of a surface of the current collector. The barrier member forms a wall along the main edge(s) of the current collector, defining an inner region bounded by the barrier member and the top surface of the current collector, and the electrode material occupies the inner region.Type: GrantFiled: May 18, 2016Date of Patent: March 17, 2020Assignees: 24M Technologies Inc., Kyocera CorporationInventors: Naoki Ota, Takaaki Fukushima, Ricardo Bazzarella, Richard Holman, Sarah Cole, Drew Walker, Hiuling Zoe Yu, Taison Tan
-
Publication number: 20200044296Abstract: Embodiments described herein relate generally to methods for the remediation of electrochemical cell electrodes. In some embodiments, a method includes obtaining an electrode material. At least a portion of the electrode material is rinsed to remove a residue therefrom. The electrode material is separated into constituents for reuse.Type: ApplicationFiled: July 31, 2019Publication date: February 6, 2020Inventors: Yet-Ming CHIANG, William WOODFORD, Hiuling Zoe YU
-
Patent number: 10497935Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: GrantFiled: November 3, 2015Date of Patent: December 3, 2019Assignees: 24M Technologies, Inc., Kyocera CorporationInventors: Naoki Ota, Mihai Duduta, Takaaki Fukushima, Hiuling Zoe Yu, Taison Tan, Hiromitsu Mishima
-
Patent number: 10411310Abstract: Embodiments described herein relate generally to methods for the remediation of electrochemical cell electrodes. In some embodiments, a method includes obtaining an electrode material. At least a portion of the electrode material is rinsed to remove a residue therefrom. The electrode material is separated into constituents for reuse.Type: GrantFiled: June 20, 2016Date of Patent: September 10, 2019Assignee: 24M Technologies, Inc.Inventors: Yet-Ming Chiang, William Woodford, Hiuling Zoe Yu
-
Publication number: 20170025674Abstract: An energy storage device includes a positive electrode current collector, a negative electrode current collector and a separator disposed between the positive electrode current collector and the negative electrode current collector. The separator is spaced from the positive electrode current collector, thereby at least partially defining a positive electroactive zone, and the separator may be spaced from the negative electrode current collector, thereby at least partially defining a negative electroactive zone. The energy storage device includes a semi-solid electrode with a thickness in the range of about 200 ?m to about 2,000 ?m, located in the positive electroactive zone and/or the negative electroactive zone. The semi-solid electrode may also include a suspension of an ion-storing solid phase material in a non-aqueous liquid electrolyte.Type: ApplicationFiled: February 2, 2016Publication date: January 26, 2017Inventors: Taison TAN, Naoki OTA, William WOODFORD, Jeffry DISKO, Takaaki FUKUSHIMA, Lauren SIMPSON, Richard HOLMAN, Mihai DUDUTA, Hiuling Zoe YU
-
Publication number: 20160372802Abstract: Embodiments described herein relate generally to methods for the remediation of electrochemical cell electrodes. In some embodiments, a method includes obtaining an electrode material. At least a portion of the electrode material is rinsed to remove a residue therefrom. The electrode material is separated into constituents for reuse.Type: ApplicationFiled: June 20, 2016Publication date: December 22, 2016Inventors: Yet-Ming CHIANG, William WOODFORD, Hiuling Zoe YU
-
Publication number: 20160344006Abstract: Embodiments described herein relate generally to electrodes for electrochemical cells, the electrodes including an electrode material disposed on a current collector. In some embodiments, an electrode includes an edge protection barrier member on a perimeter of a surface of the current collector. The barrier member forms a wall along the main edge(s) of the current collector, defining an inner region bounded by the barrier member and the top surface of the current collector, and the electrode material occupies the inner region.Type: ApplicationFiled: May 18, 2016Publication date: November 24, 2016Inventors: Naoki OTA, Takaaki FUKUSHIMA, Ricardo BAZARELLA, Richard HOLMAN, Sarah COLE, Drew WALKER, Hiuling Zoe YU, Taison TAN
-
Publication number: 20160126543Abstract: Embodiments described herein relate generally to electrochemical cells having pre-lithiated semi-solid electrodes, and particularly to semi-solid electrodes that are pre-lithiated during the mixing of the semi-solid electrode slurry such that a solid-electrolyte interface (SEI) layer is formed in the semi-solid electrode before the electrochemical cell formation. In some embodiments, a semi-solid electrode includes about 20% to about 90% by volume of an active material, about 0% to about 25% by volume of a conductive material, about 10% to about 70% by volume of a liquid electrolyte, and lithium (as lithium metal, a lithium-containing material, and/or a lithium metal equivalent) in an amount sufficient to substantially pre-lithiate the active material. The lithium metal is configured to form a solid-electrolyte interface (SEI) layer on a surface of the active material before an initial charging cycle of an electrochemical cell that includes the semi-solid electrode.Type: ApplicationFiled: November 3, 2015Publication date: May 5, 2016Inventors: Naoki OTA, Mihai DUDUTA, Takaaki FUKUSHIMA, Hiuling Zoe YU, Taison TAN, Hiromitsu MISHIMA