Patents by Inventor HO-CHIN WU

HO-CHIN WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10766031
    Abstract: The present disclosure relates to a microfluidic-based analyzer, including a drive module and a microfluidic disc. On the microfluidic disk, a capillary is connected between a mixing chamber and a waste chamber. More particularly, the capillary is connected to the mixing chamber through a first access on the first radius of the microfluidic disc, and the capillary is connected to the waste chamber through a second access on the second radius of the microfluidic disk. Specifically, a turn of the capillary is disposed between the first access and the second access, in which a folding is configured on a third radius of the microfluidic disc. Overall, the aforementioned microfluidic-based analyzer is able to be operated in different rotational speeds and is capable of evacuating the mixing chamber and enhancing the washing efficiency.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: September 8, 2020
    Assignee: FENG CHIA UNIVERSITY
    Inventors: Chih-Hsin Shih, Ho-Chin Wu, Yen-Hao Chen
  • Publication number: 20200230595
    Abstract: An immunodetection method is provided, including: providing a disk; providing a capture antibody on a substrate adding a sample to a reservoir; applying a first rotational speed to transfer the sample containing an antigen from the reservoir to a reaction chamber applying a second rotational speed to precipitate the sample on the substrate so as to combine the antigen in the sample with the capture antibody to obtain a first complex; using capillary force to make the sample flow out of the reaction chamber and to fill the flow channel; applying a third rotational speed to transfer the sample from the flow channel to the waste chamber; providing a detection antibody on the substrate to combine the detection antibody with the first complex to obtain a second complex; and detecting a spectral signal from the localized surface plasma resonance of the second complex.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 23, 2020
    Inventors: Chih-Hsin Shih, Ho-Chin Wu, Cheng-Liang Lee, Chuen-Yuan Hsu
  • Publication number: 20180318836
    Abstract: The present disclosure relates to a microfluidic-based analyzer, including a drive module and a microfluidic disc. On the microfluidic disk, a capillary is connected between a mixing chamber and a waste chamber. More particularly, the capillary is connected to the mixing chamber through a first access on the first radius of the microfluidic disc, and the capillary is connected to the waste chamber through a second access on the second radius of the microfluidic disk. Specifically, a turn of the capillary is disposed between the first access and the second access, in which a folding is configured on a third radius of the microfluidic disc. Overall, the aforementioned microfluidic-based analyzer is able to be operated in different rotational speeds and is capable of evacuating the mixing chamber and enhancing the washing efficiency.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 8, 2018
    Inventors: CHIH-HSIN SHIH, HO-CHIN WU, YEN-HAO CHEN
  • Patent number: 8945480
    Abstract: The invention provides an apparatus and methodology to carry out biochemical testing on a centrifugal platform using flow splitting technique. In conventional biochemical testing, reagents need to be loaded individually into each reservoir. By using the flow splitting technique in this invention, one reagent only need to be loaded once, then, it can be evenly distributed into each reaction chambers in single or multiple layers format. The invention greatly reduces the required manpower when large numbers of assays are integrated on one platform. Because of the invention, many medical examinations can be performed efficiently, thus reduce the waste of manpower, time and cost.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 3, 2015
    Assignee: Feng Chia University
    Inventors: Chih-Hsin Shih, Ho-Chin Wu, Yu-Ping Yang
  • Publication number: 20140038209
    Abstract: The invention provides an apparatus and methodology to carry out biochemical testing on a centrifugal platform using flow splitting technique. In conventional biochemical testing, reagents need to be loaded individually into each reservoir. By using the flow splitting technique in this invention, one reagent only need to be loaded once, then, it can be evenly distributed into each reaction chambers in single or multiple layers format. The invention greatly reduces the required manpower when large numbers of assays are integrated on one platform. Because of the invention, many medical examinations can be performed efficiently, thus reduce the waste of manpower, time and cost.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 6, 2014
    Applicant: FENG CHIA UNIVERSITY
    Inventors: CHIH-HSIN SHIH, HO-CHIN WU, YU-PING YANG