Patents by Inventor Ho-geon Song

Ho-geon Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11495576
    Abstract: A semiconductor package includes a first die including a signal region and a peripheral region bordering the signal region and having first vias in the peripheral region, a second die stacked on the first die and having second vias at positions corresponding to the first vias in the peripheral region, and first connection terminals between the first die and the second die that are configured to connect the second vias to the first vias, respectively. The peripheral region includes first regions and second regions configured to transmit different signals, which are alternately arranged in a first direction. The first vias are arranged in at least two rows along a second direction intersecting the first direction in each of the first and second regions.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: November 8, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyoungsoo Kim, Sunwon Kang, Seungduk Baek, Ho Geon Song, Kyung Suk Oh
  • Patent number: 10896879
    Abstract: A semiconductor package includes a semiconductor package substrate. An insulating layer is disposed on the semiconductor package substrate. A semiconductor chip is disposed on the semiconductor package substrate and is covered by the insulating layer. A reflective layer is disposed on the insulating layer and is spaced apart from the semiconductor chip. The reflective layer is configured to selectively transmit radiation through to the insulating layer. A protective layer is disposed on the reflective layer.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: January 19, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kun Sil Lee, Dong Kwan Kim, Bo Ram Kang, Ho Geon Song, Won Keun Kim
  • Publication number: 20210005576
    Abstract: A semiconductor package includes a first die including a signal region and a peripheral region bordering the signal region and having first vias in the peripheral region, a second die stacked on the first die and having second vias at positions corresponding to the first vias in the peripheral region, and first connection terminals between the first die and the second die that are configured to connect the second vias to the first vias, respectively. The peripheral region includes first regions and second regions configured to transmit different signals, which are alternately arranged in a first direction. The first vias are arranged in at least two rows along a second direction intersecting the first direction in each of the first and second regions.
    Type: Application
    Filed: March 18, 2020
    Publication date: January 7, 2021
    Inventors: Kyoungsoo Kim, Sunwon Kang, Seungduk Baek, Ho Geon Song, Kyung Suk Oh
  • Patent number: 10756062
    Abstract: A semiconductor chip includes a semiconductor substrate, a through electrode, an inter-mediation pad, an upper pad, and a rewiring line. The semiconductor substrate includes a first surface that is an active surface and a second surface that is opposite to the first surface. The through electrode penetrates the semiconductor substrate and is disposed in at least one column in a first direction in a center portion of the semiconductor substrate. The inter-mediation pad is disposed in at least one column in the first direction in an edge portion of the second surface. The upper pad is disposed on the second surface and connected to the through electrode. The rewiring line is disposed on the second surface and connects the inter-mediation pad to the upper pad.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: August 25, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyoung-Soo Kim, Seung-Duk Baek, Sun-Won Kang, Ho-Geon Song, Gun-Ho Chang
  • Publication number: 20200013753
    Abstract: A semiconductor chip includes a semiconductor substrate, a through electrode, an inter-mediation pad, an upper pad, and a rewiring line. The semiconductor substrate includes a first surface that is an active surface and a second surface that is opposite to the first surface. The through electrode penetrates the semiconductor substrate and is disposed in at least one column in a first direction in a center portion of the semiconductor substrate. The inter-mediation pad is disposed in at least one column in the first direction in an edge portion of the second surface. The upper pad is disposed on the second surface and connected to the through electrode. The rewiring line is disposed on the second surface and connects the inter-mediation pad to the upper pad.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 9, 2020
    Inventors: Kyoung-Soo Kim, Seung-Duk Baek, Sun-Won Kang, Ho-Geon Song, Gun-Ho Chang
  • Publication number: 20190287920
    Abstract: A semiconductor package includes a semiconductor package substrate. An insulating layer is disposed on the semiconductor package substrate. A semiconductor chip is disposed on the semiconductor package substrate and is covered by the insulating layer. A reflective layer is disposed on the insulating layer and is spaced apart from the semiconductor chip. The reflective layer is configured to selectively transmit radiation through to the insulating layer. A protective layer is disposed on the reflective layer.
    Type: Application
    Filed: November 27, 2018
    Publication date: September 19, 2019
    Inventors: KUN SIL LEE, DONG KWAN KIM, BO RAM KANG, HO GEON SONG, WON KEUN KIM
  • Publication number: 20190139921
    Abstract: A semiconductor device includes a substrate, a contact pad arranged in the substrate, a bump arranged on the contact pad to be electrically connected with the contact pad, an insulating film arranged on the substrate to surround a side surface of the bump and to expose at least a portion of the contact pad to the bump, and a photosensitive film which is formed on the insulating film and comprises a polyimide, wherein the photosensitive film comprises a first region surrounding the side surface of the bump and having a first thickness measured in a vertical direction, and a second region arranged on the first region and having a second thickness thickermeasured in the vertical direction, wherein the second region is spaced apart from the bump in a horizontal direction, and wherein the second thickness is greater than a thickness two times thicker than a difference value between the second thickness and the first thickness.
    Type: Application
    Filed: July 9, 2018
    Publication date: May 9, 2019
    Inventors: Nam Gyu BAEK, In Young LEE, Hyun Soo CHUNG, Ho Geon SONG
  • Patent number: 9941196
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: April 10, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-Jin Lee, Tae-Je Cho, Dong-Hyeon Jang, Ho-Geon Song, Se-Young Jeong, Un-Byoung Kang, Min-Seung Yoon
  • Publication number: 20160233155
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 11, 2016
    Inventors: Ho-Jin LEE, Tae-Je CHO, Dong-Hyeon JANG, Ho-Geon SONG, Se-Young JEONG, Un-Byoung KANG, Min-Seung YOON
  • Patent number: 9343361
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: May 17, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-Jin Lee, Tae-Je Cho, Dong-Hyeon Jang, Ho-Geon Song, Se-Young Jeong, Un-Byoung Kang, Min-Seung Yoon
  • Patent number: 9184065
    Abstract: A method of molding a semiconductor package includes coating liquid molding resin or disposing solid molding resin on a top surface of a semiconductor chip arranged on a substrate. The solid molding resin may include powdered molding resin or sheet-type molding resin. In a case where liquid molding resin is coated on the top surface of the semiconductor chip, the substrate is mounted between a lower molding and an upper molding, and then melted molding resin is filled in a space between the lower molding and the upper molding. In a case where the solid molding resin is disposed on the top surface of the semiconductor chip, the substrate is mounted on a lower mold and then the solid molding resin is heated and melts into liquid molding resin having flowability. An upper mold is mounted on the lower mold, and melted molding resin is filled in a space between the lower molding and the upper molding.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: November 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-young Ko, Jae-yong Park, Heui-seog Kim, Ho-geon Song
  • Patent number: 9159680
    Abstract: A method of fabricating a semiconductor device includes preparing a semiconductor substrate having a circuit unit on an upper surface thereof, a metal pad electrically connected to the circuit unit, and a passivation layer that covers the circuit unit and exposes the metal pad, forming a first re-wiring layer that is electrically connected to the metal pad and is formed by a printing method to extend from the metal pad on the passivation layer and forming a second re-wiring layer on the first re-wiring layer using the first re-wiring layer as a seed by using an electro-plating process.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: October 13, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-Wook Park, Kwang-Yong Lee, Ho-Geon Song
  • Patent number: 9136260
    Abstract: A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: September 15, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-seok Ahn, Dong-hyeon Jang, Ho-geon Song, Sung-jun Im, Chang-seong Jeon, Teak-hoon Lee, Sang-sick Park
  • Patent number: 9099460
    Abstract: To manufacture a stack semiconductor package, a board mold covers a first semiconductor. The board mold includes a first face and a second face opposite to the first face. An active surface of the first semiconductor faces the second face. A first opening is formed in the board mold from the second surface. The first opening is disposed on the first semiconductor. A second opening penetrates the board mold from the first surface. A conductive metal layer fills the first and the second openings using an electroless plating method. A plurality of semiconductor devices is stacked on the first face of the board mold.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: August 4, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Rae Cho, Tae-Hoon Kim, Ho-Geon Song, Seok-Won Lee
  • Publication number: 20150118798
    Abstract: A method of molding a semiconductor package includes coating liquid molding resin or disposing solid molding resin on a top surface of a semiconductor chip arranged on a substrate. The solid molding resin may include powdered molding resin or sheet-type molding resin. In a case where liquid molding resin is coated on the top surface of the semiconductor chip, the substrate is mounted between a lower molding and an upper molding, and then melted molding resin is filled in a space between the lower molding and the upper molding. In a case where the solid molding resin is disposed on the top surface of the semiconductor chip, the substrate is mounted on a lower mold and then the solid molding resin is heated and melts into liquid molding resin having flowability. An upper mold is mounted on the lower mold, and melted molding resin is filled in a space between the lower molding and the upper molding.
    Type: Application
    Filed: January 6, 2015
    Publication date: April 30, 2015
    Inventors: Jun-young Ko, Jae-yong Park, Heui-seog Kim, Ho-geon Song
  • Patent number: 8956921
    Abstract: A method of molding a semiconductor package includes coating liquid molding resin or disposing solid molding resin on a top surface of a semiconductor chip arranged on a substrate. The solid molding resin may include powdered molding resin or sheet-type molding resin. In a case where liquid molding resin is coated on the top surface of the semiconductor chip, the substrate is mounted between a lower molding and an upper molding, and then melted molding resin is filled in a space between the lower molding and the upper molding. In a case where the solid molding resin is disposed on the top surface of the semiconductor chip, the substrate is mounted on a lower mold and then the solid molding resin is heated and melts into liquid molding resin having flowability. An upper mold is mounted on the lower mold, and melted molding resin is filled in a space between the lower molding and the upper molding.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-young Ko, Jae-yong Park, Heui-seog Kim, Ho-geon Song
  • Patent number: 8927340
    Abstract: Provided are a double-sided adhesive tape, semiconductor packages, and methods of fabricating the packages. A method of fabricating semiconductor packages includes providing a double-sided adhesive tape on a top surface of a carrier, the double-sided adhesive tape including a first adhesive layer and a second adhesive layer stacked on the first adhesive layer, the first adhesive layer of the double-sided adhesive tape being in contact with the top surface of the carrier, adhering active surfaces of a plurality of semiconductor chips onto the second adhesive layer of the double-sided adhesive tape, separating the first adhesive layer from the second adhesive layer such that the second adhesive layer remains on the active surfaces of the semiconductor chips, patterning the second adhesive layer to form first openings that selectively expose the active surfaces of the semiconductor chips, and forming first conductive components on the second adhesive layer to fill the first openings.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Woo Park, Seok-Hyun Lee, Ho-Geon Song
  • Publication number: 20140363923
    Abstract: To manufacture a stack semiconductor package, a board mold covers a first semiconductor. The board mold includes a first face and a second face opposite to the first face. An active surface of the first semiconductor faces the second face. A first opening is formed in the board mold from the second surface. The first opening is disposed on the first semiconductor. A second opening penetrates the board mold from the first surface. A conductive metal layer fills the first and the second openings using an electroless plating method. A plurality of semiconductor devices is stacked on the first face of the board mold.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Inventors: Yun-Rae Cho, Tae-Hoon Kim, Ho-Geon Song, Seok-Won Lee
  • Patent number: 8890294
    Abstract: To manufacture a stack semiconductor package, a board mold covers a first semiconductor. The board mold includes a first face and a second face opposite to the first face. An active surface of the first semiconductor faces the second face. A first opening is formed in the board mold from the second surface. The first opening is disposed on the first semiconductor. A second opening penetrates the board mold from the first surface. A conductive metal layer fills the first and the second openings using an electroless plating method. A plurality of semiconductor devices is stacked on the first face of the board mold.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Rae Cho, Tae-Hoon Kim, Ho-Geon Song, Seok-Won Lee
  • Publication number: 20140196280
    Abstract: A method and apparatus to manufacture a flip chip package includes dotting a flux on a first preliminary bump of a package substrate, attaching a preliminary bump of a first semiconductor chip to the first preliminary bump of the package substrate via the flux, dotting a flux on a second preliminary bump of the package substrate, and attaching a preliminary bump of a second semiconductor chip to the second preliminary bump of the package substrate via the flux. Accordingly, an evaporation of the flux on the preliminary bump of the package substrate may be suppressed.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: Samsung Electronics Co., Ltd
    Inventors: Chang-Seong JEON, Ho-Geon SONG, Mitsuo UMEMOTO, Sang-Sick PARK