Patents by Inventor Ho Wai Lo

Ho Wai Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11185957
    Abstract: One embodiment of the present invention can be characterized as a method for controlling a multi-axis machine tool that includes obtaining a preliminary rotary actuator command (wherein the rotary actuator command has frequency content exceeding a bandwidth of a rotary actuator), generating a processed rotary actuator command based, at least in part, on the preliminary rotary actuator command, the processed rotary actuator command having frequency content within a bandwidth of the rotary actuator and generating a first linear actuator command and a second linear actuator command based, at least in part, on the processed rotary actuator command. The processed rotary actuator command can be output to the rotary actuator, the first linear actuator command can be output to a first linear actuator and the second linear actuator command can be output to a second linear actuator.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: November 30, 2021
    Assignee: ELECTRO SCIENTIFIC INDUSTRIES, INC
    Inventors: Guang Lu, Mehmet E. Alpay, Mike Tyler, Qian Xu, Jan Kleinert, Zhibin Lin, James D. Brookhyser, Ho Wai Lo, Kurt M. Eaton
  • Publication number: 20210276125
    Abstract: Varied embodiments of a laser-based machine tool, and techniques for controlling the same are provided. Some embodiments relate to techniques to facilitate uniform and reproducible processing of workpieces. Other embodiments relate to a zoom lens having a quickly-variable focal length. Still other embodiments relate to various features of a laser-based multi-axis machine tool that can facilitate efficient delivery of laser energy to a scan head, that can address thermomechanical issues that may arise during workpiece processing, etc. Another embodiment relates to techniques for minimizing or preventing undesired accumulation of particulate matter on workpiece surfaces during processing. A number of other embodiments and arrangements are also detailed.
    Type: Application
    Filed: April 30, 2018
    Publication date: September 9, 2021
    Inventors: Guang LU, Brian Johansen, Mark Kosmowski, Ho Wai Lo, Guangyu Li
  • Publication number: 20200246929
    Abstract: One embodiment of the present invention can be characterized as a method for controlling a multi-axis machine tool that includes obtaining a preliminary rotary actuator command (wherein the rotary actuator command has frequency content exceeding a bandwidth of a rotary actuator), generating a processed rotary actuator command based, at least in part, on the preliminary rotary actuator command, the processed rotary actuator command having frequency content within a bandwidth of the rotary actuator and generating a first linear actuator command and a second linear actuator command based, at least in part, on the processed rotary actuator command. The processed rotary actuator command can be output to the rotary actuator, the first linear actuator command can be output to a first linear actuator and the second linear actuator command can be output to a second linear actuator.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: Guang Lu, Mehmet E. Alpay, Mike Tyler, Qian XU, Jan Kleinert, Zhibin Lin, James D. Brookhyser, Ho Wai Lo, Kurt M. Eaton
  • Patent number: 10654141
    Abstract: One embodiment of the present invention can be characterized as a method for controlling a multi-axis machine tool that includes obtaining a preliminary rotary actuator command (wherein the rotary actuator command has frequency content exceeding a bandwidth of a rotary actuator), generating a processed rotary actuator command based, at least in part, on the preliminary rotary actuator command, the processed rotary actuator command having frequency content within a bandwidth of the rotary actuator and generating a first linear actuator command and a second linear actuator command based, at least in part, on the processed rotary actuator command. The processed rotary actuator command can be output to the rotary actuator, the first linear actuator command can be output to a first linear actuator and the second linear actuator command can be output to a second linear actuator.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: May 19, 2020
    Assignee: ELECTRO SCIENTIFIC INDUSTRIES, INC
    Inventors: Guang Lu, Mehmet E. Alpay, Mike Tyler, Qian Xu, Jan Kleinert, Zhibin Lin, James D. Brookhyser, Ho Wai Lo, Kurt M. Eaton
  • Publication number: 20180243872
    Abstract: One embodiment of the present invention can be characterized as a method for controlling a multi-axis machine tool that includes obtaining a preliminary rotary actuator command (wherein the rotary actuator command has frequency content exceeding a bandwidth of a rotary actuator), generating a processed rotary actuator command based, at least in part, on the preliminary rotary actuator command, the processed rotary actuator command having frequency content within a bandwidth of the rotary actuator and generating a first linear actuator command and a second linear actuator command based, at least in part, on the processed rotary actuator command. The processed rotary actuator command can be output to the rotary actuator, the first linear actuator command can be output to a first linear actuator and the second linear actuator command can be output to a second linear actuator.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 30, 2018
    Inventors: Guang Lu, Mehmet E. Alpay, Mike Tyler, Qian XU, Jan Kleinert, Zhibin Lin, Jim D. Brookhyser, Ho Wai Lo, Kurt M. Eaton
  • Patent number: 9981357
    Abstract: One embodiment of the present invention can be characterized as a method for controlling a multi-axis machine tool that includes obtaining a preliminary rotary actuator command (wherein the rotary actuator command has frequency content exceeding a bandwidth of a rotary actuator), generating a processed rotary actuator command based, at least in part, on the preliminary rotary actuator command, the processed rotary actuator command having frequency content within a bandwidth of the rotary actuator and generating a first linear actuator command and a second linear actuator command based, at least in part, on the processed rotary actuator command. The processed rotary actuator command can be output to the rotary actuator, the first linear actuator command can be output to a first linear actuator and the second linear actuator command can be output to a second linear actuator.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: May 29, 2018
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Guang Lu, Mehmet E. Alpay, Mike Tyler, Qian Xu, Jan Kleinert, Zhibin Lin, James D. Brookhyser, Ho Wai Lo, Kurt M. Eaton
  • Publication number: 20160368110
    Abstract: One embodiment of the present invention can be characterized as a method for controlling a multi-axis machine tool that includes obtaining a preliminary rotary actuator command (wherein the rotary actuator command has frequency content exceeding a bandwidth of a rotary actuator), generating a processed rotary actuator command based, at least in part, on the preliminary rotary actuator command, the processed rotary actuator command having frequency content within a bandwidth of the rotary actuator and generating a first linear actuator command and a second linear actuator command based, at least in part, on the processed rotary actuator command. The processed rotary actuator command can be output to the rotary actuator, the first linear actuator command can be output to a first linear actuator and the second linear actuator command can be output to a second linear actuator.
    Type: Application
    Filed: June 21, 2016
    Publication date: December 22, 2016
    Inventors: Guang Lu, Mehmet E. Alpay, Mike Tyler, Qian XU, Jan Kleinert, Zhibin Lin, James D. Brookhyser, Ho Wai Lo, Kurt M. Eaton
  • Patent number: 8497450
    Abstract: A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: July 30, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly Bruland, Mark Unrath, Stephen Swaringen, Ho Wai Lo, Clint Vandergiessen, Keith Grant
  • Patent number: 8383982
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using multiple laser beams. The structures may be laser-severable conductive links, and the purpose of the irradiation may be to sever selected links.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 26, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Stephen N. Swaringen, Brian W. Baird, Ho Wai Lo, David Martin Hemenway, Brady Nilsen, Clint Vandergiessen
  • Patent number: 8238007
    Abstract: A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: August 7, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly Bruland, Mark Unrath, Stephen Swaringen, Ho Wai Lo, Clint Vandergiessen, Keith Grant
  • Patent number: 8148211
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method simultaneously directs the first and second laser beams onto distinct first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate substantially in unison in a direction substantially parallel to the lengthwise direction of the row, so as to selectively irradiate structures in the row with one or more of the first and second laser beams simultaneously.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 3, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Stephen N. Swaringen, Frank G. Evans
  • Patent number: 8110775
    Abstract: A system determines relative positions of a semiconductor substrate and a plurality of laser beam spots on or within the semiconductor substrate in a machine for selectively irradiating structures on or within the substrate using a plurality of laser beams. The system comprises a laser source, first and second laser beam propagation paths, first and second reflection sensors, and a processor. The laser source produces at least the first and second laser beams, which propagate toward the substrate along the first and second propagation paths, respectively, which have respective first and second axes that intersects the substrate at respective first and second spots. The reflection sensors are positioned to detect reflection of the spots, as the spots moves relative to the substrate, thereby generating reflection signals. The processor is configured to determine, based on the reflection signals, positions of the spots on or within the substrate.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: February 7, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Ho Wai Lo, David Martin Hemenway, Brady Nilsen, Kelly J. Bruland
  • Publication number: 20110186555
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of pulsed laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first pulsed laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second pulsed laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method directs respective first and second pulses from the first and second pulsed laser beams onto distinct first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate substantially in unison in a direction substantially parallel to the lengthwise direction of the row.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Stephen N. Swaringen, Frank G. Evans
  • Publication number: 20110134525
    Abstract: A system for forming two laser processing beams with controlled stability at a target specimen work surface includes first and second mutually coherent laser beams propagating along separate first and second beam paths that are combined to perform an optical property adjustment. The combined laser beams are separated into third and fourth laser beams propagating along separate beam paths and including respective third and fourth main beam components, and one of the third and fourth laser beams contributes a leakage component that copropagates in mutual temporal coherence with the main beam component of the other of the third and fourth laser beams. An effect of mutual temporal coherence of the leakage component and the other main beam component with which the leakage component copropagates is reduced through acousto-optic modulation frequency shifts or through incorporation of an optical path length difference in the two beams.
    Type: Application
    Filed: February 14, 2011
    Publication date: June 9, 2011
    Inventors: Douglas Earl Holmgren, Ho Wai Lo, Philip Mitohell Conklin
  • Patent number: 7935941
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method directs the first and second laser beams onto non-adjacent first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate along the row substantially in unison in a direction substantially parallel to the lengthwise direction of the row.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: May 3, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Frank G. Evans
  • Patent number: 7923306
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of pulsed laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first pulsed laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second pulsed laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method directs respective first and second pulses from the first and second pulsed laser beams onto distinct first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate substantially in unison in a direction substantially parallel to the lengthwise direction of the row.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 12, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Stephen N. Swaringen, Frank G. Evans
  • Patent number: 7888620
    Abstract: A method of and system for forming two laser processing beams with controlled stability at a target specimen work surface includes first and second mutually coherent laser beams propagating along separate first and second beam paths that are combined to perform an optical property adjustment. The combined laser beams are separated into third and fourth laser beams propagating along separate beam paths and including respective third and fourth main beam components, and one of the third and fourth laser beams contributes a leakage component that copropagates in mutual temporal coherence with the main beam component of the other of the third and fourth laser beams. An effect of mutual temporal coherence of the leakage component and the other main beam component with which the leakage component copropagates is reduced through acousto-optic modulation frequency shifts or through incorporation of an optical path length difference in the two beams.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 15, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Douglas Earl Holmgren, Ho Wai Lo, Philip Mitchell Conklin
  • Publication number: 20100089881
    Abstract: Methods and systems process a semiconductor substrate having a plurality of structures to be selectively irradiated with multiple laser beams. The structures are arranged in a plurality of substantially parallel rows extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects a first target location on or within the semiconductor substrate. The method also generates a second laser beam that propagates along a second laser beam axis that intersects a second target location on or within the semiconductor substrate. The second target location is offset from the first target location in a direction perpendicular to the lengthwise direction of the rows by some amount such that, when the first target location is a structure on a first row of structures, the second target location is a structure or between two adjacent structures on a second row distinct from the first row.
    Type: Application
    Filed: December 15, 2009
    Publication date: April 15, 2010
    Applicant: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo
  • Publication number: 20100084662
    Abstract: Methods and systems use laser pulses to process a selected structure on or within a semiconductor substrate. The structure has a surface, a width, and a length. The laser pulses propagate along axes that move along a scan beam path relative to the substrate as the laser pulses process the selected structure. The method simultaneously generates on the selected structure first and second laser beam pulses that propagate along respective first and second laser beam axes intersecting the selected structure at distinct first and second locations. The first and second laser beam pulses impinge on the surface of the selected structure respective first and second beam spots. Each beam spot encompasses at least the width of the selected link. The first and second beam spots are spatially offset from one another along the length of the selected structure to define an overlapping region covered by both the first and the second beam spots and a total region covered by one or both of the first and second beam spots.
    Type: Application
    Filed: December 8, 2009
    Publication date: April 8, 2010
    Applicant: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Richard S. Harris, Yunlong Sun
  • Patent number: 7687740
    Abstract: Methods and systems process a semiconductor substrate having a plurality of structures to be selectively irradiated with multiple laser beams. The structures are arranged in a plurality of substantially parallel rows extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects a first target location on or within the semiconductor substrate. The method also generates a second laser beam that propagates along a second laser beam axis that intersects a second target location on or within the semiconductor substrate. The second target location is offset from the first target location in a direction perpendicular to the lengthwise direction of the rows by some amount such that, when the first target location is a structure on a first row of structures, the second target location is a structure or between two adjacent structures on a second row distinct from the first row.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: March 30, 2010
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo