Patents by Inventor Hoa Van Do

Hoa Van Do has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130235490
    Abstract: An embodiment of the invention provides an apparatus that includes: a perpendicular magnetic recording medium including a substrate, a soft under layer above the substrate, a seed layer structure above the soft under layer, wherein the seed layer structure contains Ruthenium; and a magnetic recording layer above the seed layer structure.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventors: Hoa Van Do, Kentaro Takano, Qi-Fan Xiao, Chu Sy Tran
  • Patent number: 8263239
    Abstract: A laminated magnetic recording structure for use in perpendicular or longitudinal recording is described. A small amount of ferromagnetic coupling is added between the two magnetic layers that are sufficiently decoupled to switch independently. In one embodiment the coupling is achieved by doping the spacer layer with a ferromagnetic material. Ruthenium (Ru), which is a preferred nonmagnetic material for spacer layers with cobalt (Co) being the preferred magnetic material. The weak ferromagnetic coupling can also be achieved through the use of platinum, palladium and alloys thereof for the spacer layer without the addition of a ferromagnetic element, but alternatively they can also be doped with ferromagnetic elements. For embodiments for perpendicular recording the spacer layer further can additionally comprise oxides of one or more elements selected from the group consisting of Si, Ta, Ti, Nb, Cr, V and B.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: September 11, 2012
    Assignee: HGST Netherlands B.V.
    Inventors: Andreas Klaus Berger, Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper
  • Patent number: 7989096
    Abstract: A recording medium providing improved writeability in perpendicular recording applications includes a magnetic recording layer having an axis of magnetic anisotropy substantially perpendicular to the surface thereof, an exchange-spring layer ferromagnetically exchange coupled to the magnetic recording layer and having a coercivity less than the magnetic recording layer coercivity, and a coupling layer between the magnetic recording layer and the exchange-spring layer. The coupling layer regulates the ferromagnetic exchange coupling between the magnetic recording layer and the exchange-spring layer.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 2, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Berger, Eric Edward Fullerton, Hoa Van Do, Natacha Supper
  • Patent number: 7976964
    Abstract: The invention includes a disk drive with a magnetic recording disk with an upper and lower sublayer in at least one magnetic layer of a laminated magnetic layer structure that includes a spacer layer that substantially decouples the magnetic layers. The lower sublayer has a lower boron content than the upper sublayer and a preferred embodiment is CoPtCrBTa. The upper sublayer is deposited onto the lower sublayer and is preferably CoPtCrB with a higher boron content than the lower sublayer. The composition of the lower sublayer gives it a very low moment with low intrinsic coercivity which would not be useful as a recording layer on its own. The upper sublayer is a higher moment alloy with high intrinsic coercivity. An embodiment of the invention includes a laminated magnetic layer structure which is antiferromagnetically coupled to a lower ferromagnetic layer.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: July 12, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper
  • Patent number: 7758982
    Abstract: A SiON overcoat for use on magnetic media for magnetic recording. The SiON overcoat is deposited by pulsed DC sputtering while applying a negative DC bias. The SiON overcoat is especially useful on perpendicular magnetic recording media because of its ability to deposit thinly and evenly on a rough, granular high coercivity recording media while maintaining excellent corrosion protection properties. A SiON overcoat can be applied less than 3 nm thick while still maintaining excellent mechanical and corrosion protection. The overcoat also has a very high density and water contact angle.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: July 20, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Qing Dai, Hoa Van Do, Min Xiao, Bing K Yen
  • Publication number: 20100128391
    Abstract: A recording medium providing improved writeability in perpendicular recording applications includes a magnetic recording layer having an axis of magnetic anisotropy substantially perpendicular to the surface thereof, an exchange-spring layer ferromagnetically exchange coupled to the magnetic recording layer and having a coercivity less than the magnetic recording layer coercivity, and a coupling layer between the magnetic recording layer and the exchange-spring layer. The coupling layer regulates the ferromagnetic exchange coupling between the magnetic recording layer and the exchange-spring layer.
    Type: Application
    Filed: January 21, 2010
    Publication date: May 27, 2010
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Berger, Eric Edward Fullerton, Hoa Van Do, Natacha Supper
  • Publication number: 20100110584
    Abstract: A method is described for improving recording performance of a perpendicular media. The method includes using a dual oxide layer as a sublayer of a magnetic recording layer of the perpendicular media. The dual oxide sublayer improves recording performance, increases resistance to corrosion and allows for a thinner exchange break layer. The dual oxide layer generally includes oxides of tantalum and one of silicon or boron.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: Qing Dai, Hoa Van Do, Mary Frances Minardi, Kentaro Takano, Kai Tang, Jinliu Wang
  • Patent number: 7687157
    Abstract: A recording medium providing improved writeability in perpendicular recording applications includes a magnetic recording layer having an axis of magnetic anisotropy substantially perpendicular to the surface thereof, an exchange-spring layer ferromagnetically exchange coupled to the magnetic recording layer and having a coercivity less than the magnetic recording layer coercivity, and a coupling layer between the magnetic recording layer and the exchange-spring layer. The coupling layer regulates the ferromagnetic exchange coupling between the magnetic recording layer and the exchange-spring layer.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: March 30, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Berger, Eric Edward Fullerton, Hoa Van Do, Natacha Supper
  • Patent number: 7582368
    Abstract: A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 are either in direct contact with one another or have a coupling layer (CL) located between them. The LCL is located in direct contact with MAG2 and mediates intergranular exchange coupling in MAG2. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG2, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other segregants, which would tend to reduce intergranular exchange coupling in the LCL.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: September 1, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Klaus Berger, Hoa Van Do, Byron Hassberg Lengsfield, III, Natacha F. Supper
  • Patent number: 7556870
    Abstract: An embodiment of the invention is a layered magnetic thin film structure that uses antiferromagnetically coupled (AFC) magnetic layers where the top layer structure consists of an upper magnetic layer that is weakly ferromagnetically coupled via a nonmagnetic or weakly magnetic exchange coupling layer (interlayer) to a ferromagnetic exchange enhancing layer that is in turn, AF coupled to the lower ferromagnetic layer of the AFC structure. Preferred materials for the weak coupling layer include alloys of cobalt such as CoRu, CoBRu and CoCr in which the Co content is below the point at which the material would be ferromagnetic. A second embodiment of the invention is a laminated, AF-coupled media structure. In this structure the lower AFC layer that makes up the lower laminate layer includes: the middle magnetic layer, the weak ferromagnetic coupling layer, and the exchange enhancing layer.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: July 7, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper
  • Patent number: 7550210
    Abstract: A perpendicular magnetic recording medium has an “exchange-spring” type magnetic recording layer (RL) formed of two ferromagnetic layers with substantially similar anisotropy fields that are ferromagnetically exchange-coupled by a nonmagnetic or weakly ferromagnetic coupling layer. Because the write head produces a larger magnetic field and larger field gradient at the upper portion of the RL, while the field strength decreases further inside the RL, the upper ferromagnetic layer can have a high anisotropy field. The high field and field gradient near the top of the RL, where the upper ferromagnetic layer is located, reverses the magnetization of the upper ferromagnetic layer, which then assists in the magnetization reversal of the lower ferromagnetic layer. Because both ferromagnetic layers in this exchange-spring type RL have a high anisotropy field, the thermal stability of the medium is not compromised. The medium shows improved writability, i.e.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: June 23, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Klaus Berger, Hoa Van Do, Eric E. Fullerton, Yoshihiro Ikeda, Byron Hassberg Lengsfield, III, Natacha F. Supper
  • Patent number: 7498092
    Abstract: A perpendicular magnetic recording medium, such as a perpendicular magnetic recording disk, has a magnetic “torque” layer (MTL) that exerts a magnetic torque onto the perpendicular magnetic recording layer (RL) in the presence of the applied perpendicular write field. The MTL thus acts as a write assist layer in reversing the magnetization of the RL. A coupling layer (CL) is located between the MTL and the RL and provides the appropriate ferromagnetic coupling strength between the MTL and the RL.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: March 3, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Klaus Berger, Hoa Van Do
  • Patent number: 7491452
    Abstract: A perpendicular magnetic recording disk has a granular Co-based ferromagnetic alloy recording layer (RL) with oxides of a selected metal (Ta or Nb) and a reduced-thickness exchange-break layer (EBL) between the RL and the soft magnetic underlayer (SUL). A perpendicular magnetic recording system that includes the disk, the write head and the read head, has an improved ability to write to the RL because of the reduced-thickness EBL.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: February 17, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Bernd Heinz, Yoshihiro Ikeda, Kentaro Takano, Min Xiao
  • Patent number: 7482071
    Abstract: A perpendicular magnetic recording disk has an improved recording layer of a granular CoPtCr-based ferromagnetic alloy with inter-granular material made up of one or more oxides of Cr and one or more oxides of one or more of a segregant of Si, Ta, Ti, B, Nb or Hf, wherein the amount of oxygen present in the recording layer is greater than about 22 atomic percent and less than about 35 atomic percent. The amount of oxygen in the recording layer is substantially greater than the amount required for the stoichiometric oxide or oxides of the segregant or segregants, and a substantial portion of the oxygen present in the recording layer is present in the inter-granular material. The recording layer exhibits high signal-to-noise ratio (SNR), a coercivity Hc greater than about 5000 Oe and a nucleation field Hn greater (more negative) than about ?1500 Oe.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: January 27, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Bernd Heinz, Yoshihiro Ikeda, Kentaro Takano, Min Xiao
  • Patent number: 7479332
    Abstract: A method and apparatus for improving the signal-to-noise ratio in a longitudinal recording media is disclosed. The apparatus includes a first recording layer of the longitudinal recording media residing at the top of a recording media structure. The first recording layer includes an upper sublayer comprised of a CoPtCrB-based alloy material. The first recording layer also includes a lower sublayer comprised of a CoPtCrB-based alloy material and a middle sublayer comprised of a CoCrB-alloy. The middle sublayer is coupled to the upper sublayer and to the lower sublayer and is substantially thinner than the upper sublayer and the lower sublayer.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: January 20, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Eric Edward Fullerton, David Thomas Margulies, Natacha Supper, Hoa Van Do
  • Patent number: 7425377
    Abstract: A laminate structure is disclosed comprising multiple ferromagnetic layers achieving incoherent reversal while maintaining good SNR. A high magnetic moment density, low anisotropy field material may form a thin overlayer deposited over a high-anisotropy media layer. The media layer may have a lower magnetic moment density than the overlayer and have decoupled magnetic grains. A coupling layer may be interposed between the overlayer and the media layer to modulate the exchange there between, thereby reducing the pass-through of noise while still promoting incoherent reversal to achieve reduced write energy requirements.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: September 16, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Eric Edward Fullerton, Hoa Van Do, David Thomas Margulies, Natacha Supper
  • Publication number: 20080138662
    Abstract: A perpendicular magnetic recording medium has a multilayer recording layer (RL) structure that includes a ferromagnetic intergranular exchange enhancement layer for mediating intergranular exchange coupling in the other ferromagnetic layers in the RL structure. The RL structure may be a multilayer of a first ferromagnetic layer (MAG1) of granular polycrystalline Co alloy with Ta-oxide, a second ferromagnetic layer (MAG2) of granular polycrystalline Co alloy with Si-oxide, and an oxide-free CoCr capping layer on top of and in contact with MAG2 for mediating intergranular exchange coupling in MAG1 and MAG2. The RL structure may also be a multilayer of an intergranular exchange enhancement interlayer (IL) in between two ferromagnetic layers, MAG1 and MAG2, each with reduced or no intergranular exchange coupling. Because the IL is in direct contact with both MAG1 and MAG2, it directly mediates intergranular exchange coupling in each of MAG1 and MAG2.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 12, 2008
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Andreas Klaus Berger, Qing Dai, Hoa Van Do, Yoshihiro Ikeda, David Thomas Margulies, Natacha F. Supper, Kentaro Takano, Min Xiao
  • Publication number: 20080070065
    Abstract: A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 are either in direct contact with one another or have a coupling layer (CL) located between them. The LCL is located in direct contact with MAG2 and mediates intergranular exchange coupling in MAG2. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG2, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other segregants, which would tend to reduce intergranular exchange coupling in the LCL.
    Type: Application
    Filed: September 14, 2006
    Publication date: March 20, 2008
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Andreas Klaus Berger, Hoa Van Do, Byron Hassberg Lengsfield, Natacha F. Supper
  • Publication number: 20080057349
    Abstract: A high performance perpendicular media with optimal exchange coupling between grains has improved thermal stability, writeability, and signal-to-noise ratio in a selected range of allowable intergranular exchange between the grains for high performing media. The writeability and byte error rate of a TaOx media are demonstrated to be substantially better than that of other designs.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 6, 2008
    Inventors: Andreas Klaus Berger, Hoa Van Do, Yoshihiro Ikeda, Byron Hassberg Lengsfield, Hal Jervis Rosen, Kentaro Takano, Min Xiao
  • Publication number: 20070298285
    Abstract: A laminated magnetic recording structure for use in perpendicular or longitudinal recording is described. A small amount of ferromagnetic coupling is added between the two magnetic layers that are sufficiently decoupled to switch independently. In one embodiment the coupling is achieved by doping the spacer layer with a ferromagnetic material. Ruthenium (Ru), which is a preferred nonmagnetic material for spacer layers with cobalt (Co) being the preferred magnetic material. The weak ferromagnetic coupling can also be achieved through the use of platinum, palladium and alloys thereof for the spacer layer without the addition of a ferromagnetic element, but alternatively they can also be doped with ferromagnetic elements. For embodiments for perpendicular recording the spacer layer further can additionally comprise oxides of one or more elements selected from the group consisting of Si, Ta, Ti, Nb, Cr, V and B.
    Type: Application
    Filed: June 26, 2006
    Publication date: December 27, 2007
    Inventors: Andreas Klaus Berger, Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper