Patents by Inventor Hoang-Ha Tran

Hoang-Ha Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11696673
    Abstract: An enhanced flexible robotic endoscopy apparatus includes a main body and flexible elongate shaft. The main body comprises a proximal end, a distal end and a housing that extends to the proximal end and the housing comprises a plurality of surfaces and a plurality of insertion inlets which reside on at least one of the surface of the housing at the proximal end of the main body, through which a plurality of channels for endoscopy are accessible. Each of the insertion inlets has insertion axis corresponding thereto, along which flexible elongate assemblies are insertable, with the insertion axes of the insertion inlets being parallel to the central axis of the flexible elongate shaft at the proximal end of the flexible elongate shaft.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: July 11, 2023
    Assignees: ENDOMASTER PTE LTD, HOYA CORPORATION
    Inventors: Tomonori Yamamoto, Isaac David Penny, Christopher Lee Shih Hao Sam Soon, Hoang-Ha Tran, Tae Zar Lwin, Tsun En Tan, Naoyuki Naito, Takahiro Kobayashi, Makio Oishi
  • Patent number: 10939804
    Abstract: An enhanced flexible robotic endoscopy apparatus includes a main body and flexible elongate shaft. The main body comprises a proximal end, a distal end and a housing that extends to the proximal end and the housing comprises a plurality of surfaces and a plurality of insertion inlets which reside on at least one of the surface of the housing at the proximal end of the main body, through which a plurality of channels for endoscopy are accessible. Each of the insertion inlets has insertion axis corresponding thereto, along which flexible elongate assemblies are insertable, with the insertion axes of the insertion inlets being parallel to the central axis of the flexible elongate shaft at the proximal end of the flexible elongate shaft.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: March 9, 2021
    Assignee: ENDOMASTER PTE LTD
    Inventors: Tomonori Yamamoto, Isaac David Penny, Christopher Lee Shih Hao Sam Soon, Hoang-Ha Tran, Tae Zar Lwin, Tsun En Tan, Naoyuki Naito, Takahiro Kobayashi, Makio Oishi
  • Publication number: 20210007583
    Abstract: An enhanced flexible robotic endoscopy apparatus includes a main body and flexible elongate shaft. The main body comprises a proximal end, a distal end and a housing that extends to the proximal end and the housing comprises a plurality of surfaces and a plurality of insertion inlets which reside on at least one of the surface of the housing at the proximal end of the main body, through which a plurality of channels for endoscopy are accessible. Each of the insertion inlets has insertion axis corresponding thereto, along which flexible elongate assemblies are insertable, with the insertion axes of the insertion inlets being parallel to the central axis of the flexible elongate shaft at the proximal end of the flexible elongate shaft.
    Type: Application
    Filed: June 24, 2020
    Publication date: January 14, 2021
    Inventors: Tomonori Yamamoto, Isaac David Penny, Christopher Lee Shih Hao Sam Soon, Hoang-Ha Tran, Tae Zar Lwin, Tsun En Tan, Naoyuki Naito, Takahiro Kobayashi, Makio Oishi
  • Publication number: 20190191967
    Abstract: A flexible robotic endoscopy slave system includes an endoscope body and a flexible elongate shaft extending therefrom into which at least one tendon driven robotic endoscopic instrument is insertable; a docking station with which the endoscope body is releasably dockable; and a translation mechanism for selectively longitudinally displacing the endoscopic instrument(s) within the flexible elongate shaft when the endoscope body is docked. The translation mechanism can carry and selectively displace actuators that drive each robotic endoscopic instrument by way of tendons. At least one degree of freedom (DOF) of robotic instrument motion is controlled by a pair of actuators and a corresponding pair of tendons. Actuation engagement structures releasably couple the actuators to an adapter structure for driving each endoscopic instrument. Tendon pretensioning can occur automatically under programmable control.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 27, 2019
    Inventors: Tomonori Yamamoto, Isaac David Penny, Christopher Lee Shih Hao Sam Soon, Hoang-ha Tran, Tae Zar Lwin, Tsun En Tan, Naoyuki Naito, Takahiro Kobayashi, Makio Oishi
  • Publication number: 20170332882
    Abstract: An enhanced flexible robotic endoscopy apparatus includes a main body and flexible elongate shaft. The main body comprises a proximal end, a distal end and a housing that extends to the proximal end and the housing comprises a plurality of surfaces and a plurality of insertion inlets which reside on at least one of the surface of the housing at the proximal end of the main body, through which a plurality of channels for endoscopy are accessible. Each of the insertion inlets has insertion axis corresponding thereto, along which flexible elongate assemblies are insertable, with the insertion axes of the insertion inlets being parallel to the central axis of the flexible elongate shaft at the proximal end of the flexible elongate shaft.
    Type: Application
    Filed: March 19, 2015
    Publication date: November 23, 2017
    Inventors: Tomonori Yamamoto, Isaac David Penny, Christopher Lee Shih Hao Sam Soon, Hoang-Ha Tran, Tae Zar Lwin, Tsun En Tan, Naoyuki Naito, Takahiro Kobayashi, Makio Oishi
  • Publication number: 20170127911
    Abstract: A flexible robotic endoscopy slave system includes an endoscope body and a flexible elongate shaft extending therefrom into which at least one tendon driven robotic endoscopic instrument is insertable; a docking station with which the endoscope body is releasably dockable; and a translation mechanism for selectively longitudinally displacing the endoscopic instrument(s) within the flexible elongate shaft when the endoscope body is docked. The translation mechanism can carry and selectively displace actuators that drive each robotic endoscopic instrument by way of tendons. At least one degree of freedom (DOF) of robotic instrument motion is controlled by a pair of actuators and a corresponding pair of tendons. Actuation engagement structures releasably couple the actuators to an adapter structure for driving each endoscopic instrument. Tendon pretensioning can occur automatically under programmable control.
    Type: Application
    Filed: March 19, 2015
    Publication date: May 11, 2017
    Applicants: Endomaster PTE LTD, Hoya Corporation
    Inventors: Tomonori Yamamoto, Isaac David Penny, Christopher Lee Shih Hao Sam Soon, Hoang-Ha Tran, Tae Zar Lwin, Tsun En Tan, Naoyuki Naito, Takahiro Kobayashi, Makio Oishi