Patents by Inventor Hoang-Yan Lin
Hoang-Yan Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240284703Abstract: Exemplary subpixel structures include a directional light-emitting diode structure characterized by a full-width-half-maximum (FWHM) of emitted light having a divergence angle of less than or about 10°. The subpixel structure further includes a lens positioned a first distance from the light-emitting diode structure, where the lens is shaped to focus the emitted light from the light-emitting diode structure. The subpixel structure still further includes a patterned light absorption barrier positioned a second distance from the lens. The patterned light absorption barrier defines an opening in the barrier, and the focal point of the light focused by the lens is positioned within the opening. The subpixels structures may be incorporated into a pixel structure, and pixel structures may be incorporated into a display that is free of a polarizer layer.Type: ApplicationFiled: April 22, 2024Publication date: August 22, 2024Applicant: Applied Materials, Inc.Inventors: Chung-Chih Wu, Po-Jui Chen, Hoang Yan Lin, Guo-Dong Su, Wei-Kai Lee, Chi-Jui Chang, Wan-Yu Lin, Byung Sung Kwak, Robert Jan Visser
-
Patent number: 11968856Abstract: Exemplary subpixel structures include a directional light-emitting diode structure characterized by a full-width-half-maximum (FWHM) of emitted light having a divergence angle of less than or about 10°. The subpixel structure further includes a lens positioned a first distance from the light-emitting diode structure, where the lens is shaped to focus the emitted light from the light-emitting diode structure. The subpixel structure still further includes a patterned light absorption barrier positioned a second distance from the lens. The patterned light absorption barrier defines an opening in the barrier, and the focal point of the light focused by the lens is positioned within the opening. The subpixels structures may be incorporated into a pixel structure, and pixel structures may be incorporated into a display that is free of a polarizer layer.Type: GrantFiled: October 4, 2021Date of Patent: April 23, 2024Assignee: Applied Materials, Inc.Inventors: Chung-Chih Wu, Po-Jui Chen, Hoang Yan Lin, Guo-Dong Su, Wei-Kai Lee, Chi-Jui Chang, Wan-Yu Lin, Byung Sung Kwak, Robert Jan Visser
-
Patent number: 11956994Abstract: The present disclosure is generally related to 3D imaging capable OLED displays. A light field display comprises an array of 3D light field pixels, each of which comprises an array of corrugated OLED pixels, a metasurface layer disposed adjacent to the array of 3D light field pixels, and a plurality of median layers disposed between the metasurface layer and the corrugated OLED pixels. Each of the corrugated OLED pixels comprises primary or non-primary color subpixels, and produces a different view of an image through the median layers to the metasurface to form a 3D image. The corrugated OLED pixels combined with a cavity effect reduce a divergence of emitted light to enable effective beam direction manipulation by the metasurface. The metasurface having a higher refractive index and a smaller filling factor enables the deflection and direction of the emitted light from the corrugated OLED pixels to be well controlled.Type: GrantFiled: August 10, 2021Date of Patent: April 9, 2024Assignee: Applied Materials, Inc.Inventors: Chung-Chih Wu, Hoang Yan Lin, Guo-Dong Su, Zih-Rou Cyue, Li-Yu Yu, Wei-Kai Lee, Guan-Yu Chen, Chung-Chia Chen, Wan-Yu Lin, Gang Yu, Byung-Sung Kwak, Robert Jan Visser, Chi-Jui Chang
-
Publication number: 20230320139Abstract: Embodiments of the present disclosure generally relate to electroluminescent devices, such as organic light-emitting diodes, and displays including electroluminescent devices. In an embodiment is provided an electroluminescent device that includes a pixel defining layer, an organic emitting unit disposed over at least a portion of the pixel defining layer, and a filler layer disposed over at least a portion of the organic emitting unit, wherein a refractive index of the pixel defining layer is lower than a refractive index of the filler layer, and wherein the refractive index of the pixel defining layer is lower than a refractive index of one or more layers of the organic emitting unit. In another embodiment is provided a display device that includes a substrate, a thin film transistor formed on the substrate, an interconnection electrically coupled to the thin film transistor, and an electroluminescent device electrically coupled to the interconnection.Type: ApplicationFiled: September 21, 2020Publication date: October 5, 2023Inventors: Chung-chia CHEN, Wan-Yu LIN, Hyunsung BANG, Lisong XU, Gang YU, Byung-Sung KWAK, Robert Jan VISSER, Chung-Chih WU, Hoang Yan LIN, Guo-Dong SU, Wei-Kai LEE, Yi-Jiun CHEN, Ting-Sheng HSU, Po-Hsiang LIAO, Wei-Cheng LIN
-
Publication number: 20230105225Abstract: Exemplary subpixel structures include a directional light-emitting diode structure characterized by a full-width-half-maximum (FWHM) of emitted light having a divergence angle of less than or about 10°. The subpixel structure further includes a lens positioned a first distance from the light-emitting diode structure, where the lens is shaped to focus the emitted light from the light-emitting diode structure. The subpixel structure still further includes a patterned light absorption barrier positioned a second distance from the lens. The patterned light absorption barrier defines an opening in the barrier, and the focal point of the light focused by the lens is positioned within the opening. The subpixels structures may be incorporated into a pixel structure, and pixel structures may be incorporated into a display that is free of a polarizer layer.Type: ApplicationFiled: October 4, 2021Publication date: April 6, 2023Applicant: Applied Materials, Inc.Inventors: Chung-Chih Wu, Po-Jui Chen, Hoang Yan Lin, Guo-Dong Su, Wei-Kai Lee, Chi-Jui Chang, Wan-Yu Lin, Byung Sung Kwak, Robert Jan Visser
-
Publication number: 20230109619Abstract: A light-emitting pixel structure is described that may include a group of light-emitting diode structures, where each of the light-emitting diode structures is operable to emit light characterized by a different peak emission wavelength. The structures may also include a patterned light absorption barrier characterized by a group of openings in the barrier, where each of the openings permit a transmission of a portion of the light from one of the light-emitting diode structures through the barrier. The structures may further include a metasurface layer operable to change a direction of at least some of the light transmitted through the openings of the patterned light absorption barrier from the light-emitting diode structures.Type: ApplicationFiled: October 4, 2021Publication date: April 6, 2023Applicant: Applied Materials, Inc.Inventors: Chung-Chih Wu, Po-Jui Chen, Hoang Yan Lin, Guo-Dong Su, Wei-Kai Lee, Wan-Yu Lin, Byung Sung Kwak, Robert Jan Visser, Chi-Jui Chang
-
Publication number: 20220059803Abstract: The present disclosure is generally related to 3D imaging capable OLED displays. A light field display comprises an array of 3D light field pixels, each of which comprises an array of corrugated OLED pixels, a metasurface layer disposed adjacent to the array of 3D light field pixels, and a plurality of median layers disposed between the metasurface layer and the corrugated OLED pixels. Each of the corrugated OLED pixels comprises primary or non-primary color subpixels, and produces a different view of an image through the median layers to the metasurface to form a 3D image. The corrugated OLED pixels combined with a cavity effect reduce a divergence of emitted light to enable effective beam direction manipulation by the metasurface. The metasurface having a higher refractive index and a smaller filling factor enables the deflection and direction of the emitted light from the corrugated OLED pixels to be well controlled.Type: ApplicationFiled: August 10, 2021Publication date: February 24, 2022Inventors: Chung-Chih WU, Hoang Yan LIN, Guo-Dong SU, Zih-Rou CYUE, Li-Yu YU, Wei-Kai LEE, Guan-Yu CHEN, Chung-Chia CHEN, Wan-Yu LIN, Gang YU, Byung-Sung KWAK, Robert Jan VISSER, Chi-Jui CHANG
-
Publication number: 20220020951Abstract: Embodiments described herein relate to graded slope bottom reflective electrode layer structures for top-emitting organic light-emitting diode (OLED) display pixels. An EL device includes a pixel definition layer having a top surface, a bottom surface, and graded sidewalls interconnecting the top and bottom surfaces and a bottom reflective electrode layer disposed over the pixel definition layer. The bottom reflective electrode layer includes a planar electrode portion disposed over the bottom surface and a graded reflective portion disposed over the graded sidewalls, where the graded reflective portion has a concave profile. The EL device includes an organic layer disposed over the bottom reflective electrode layer and a top electrode disposed over the organic layer. Also described herein are methods for fabricating the EL device.Type: ApplicationFiled: July 13, 2021Publication date: January 20, 2022Inventors: Chung-Chia CHEN, Wan-Yu LIN, Gang YU, Byung-Sung KWAK, Robert Jan VISSER, Hyunsung BANG, Lisong XU, Chung-Chih WU, Hoang Yan LIN, Guo-Dong SU, YI-Jiun CHEN, Wei-Kai LEE
-
Patent number: 11079720Abstract: A holographic display system includes a light source that emits coherent light; a lateral displacement beam splitter that optically receives the coherent light and generates first reference light and second reference light; a first spatial light modulator (SLM) and a second SLM that optically receive the first reference light and the second reference light respectively, and construct first phase-only function (POF) light and second POF light respectively; a first beam splitter and a second beam splitter that optically receive the first POF light and the second POF light respectively, and generate first split light and second split light respectively; and a plurality of polarizers disposed between the first SLM and the first beam splitter, and between the second SLM and the second beam splitter, respectively.Type: GrantFiled: May 7, 2019Date of Patent: August 3, 2021Assignees: National Taiwan University, Himax Technologies LimitedInventors: Chien-Yu Chen, Chih-Hao Chuang, Hoang-Yan Lin
-
Publication number: 20200356051Abstract: A holographic display system includes a light source that emits coherent light; a lateral displacement beam splitter that optically receives the coherent light and generates first reference light and second reference light; a first spatial light modulator (SLM) and a second SLM that optically receive the first reference light and the second reference light respectively, and construct first phase-only function (POF) light and second POF light respectively; a first beam splitter and a second beam splitter that optically receive the first POF light and the second POF light respectively, and generate first split light and second split light respectively; and a plurality of polarizers disposed between the first SLM and the first beam splitter, and between the second SLM and the second beam splitter, respectively.Type: ApplicationFiled: May 7, 2019Publication date: November 12, 2020Inventors: Chien-Yu Chen, Chih-Hao Chuang, Hoang-Yan Lin
-
Patent number: 10680208Abstract: The present invention discloses a general, highly effective and scalable extraction-enhancing OLED display pixel structure based on embedding the OLED inside a three-dimensional reflective concave structure selectively filled with a high-index filler material. Such a structure is able to couple as much as possible internally generated photons into the filler region and then redirect otherwise confined light for out-coupling via the reflective concave structure. Ultimately high light extraction efficiency approaching ˜80% and excellent viewing characteristics are simultaneously achievable with optimized structures using highly transparent top electrodes. This scheme is scalable and wavelength insensitive, and thus can be generally applied to all red, green, and blue pixel OLEDs in high-resolution full-color displays.Type: GrantFiled: August 2, 2019Date of Patent: June 9, 2020Assignee: NATIONAL TAIWAN UNIVERSITYInventors: Chung-Chih Wu, Guo-Dong Su, Hoang Yan Lin, Wei-Kai Lee, Yi-Jiun Chen
-
Patent number: 10634987Abstract: A convex multi-projector light-field display system includes projectors and a convex diffusion screen facing the projectors. The convex diffusion screen and the plurality of projectors share a same center of curvature, such that each projector projects the image at normal incidence to the convex diffusion screen. Projections of the projectors overlap in an optimal viewing area, within which an observer sees images projected by the projectors, and the optimal viewing area and the plurality of projectors are disposed on opposite sides of the convex diffusion screen.Type: GrantFiled: May 7, 2019Date of Patent: April 28, 2020Assignees: National Taiwan University, Himax Technologies LimitedInventors: Yi Teng Xiao, Hoang Yan Lin
-
Publication number: 20190372055Abstract: The present invention discloses a general, highly effective and scalable extraction-enhancing OLED display pixel structure based on embedding the OLED inside a three-dimensional reflective concave structure selectively filled with a high-index filler material. Such a structure is able to couple as much as possible internally generated photons into the filler region and then redirect otherwise confined light for out-coupling via the reflective concave structure. Ultimately high light extraction efficiency approaching ˜80% and excellent viewing characteristics are simultaneously achievable with optimized structures using highly transparent top electrodes. This scheme is scalable and wavelength insensitive, and thus can be generally applied to all red, green, and blue pixel OLEDs in high-resolution full-color displays.Type: ApplicationFiled: August 2, 2019Publication date: December 5, 2019Inventors: Chung-Chih Wu, Guo-Dong Su, Hoang Yan Lin, Wei-Kai Lee, Yi-Jiun Chen
-
Patent number: 10483496Abstract: An electroluminescent (EL) device is disclosed. An optically reflective concave structure includes a first surface and a second surface that lies at an angle relative to the first surface, wherein at least the first and second surfaces are optically reflective. One or more functional layers include a light emitting layer, disposed over the surfaces of the optically reflective concave structure, wherein at least one electroluminescent area of the light emitting layer is defined on the first surface. Especially, the ratio between the diameter of the first surface and the thickness of the one or more functional layers in the optically reflective concave structure is smaller than a constant value.Type: GrantFiled: August 4, 2017Date of Patent: November 19, 2019Assignee: NATIONAL TAIWAN UNIVERSITYInventors: Chung-Chih Wu, Chun-Yu Lin, Wei-Kai Lee, Min Jiao, Hoang Yan Lin, Guo-Dong Su
-
Patent number: 10156731Abstract: The present invention provides a partial random laser illumination device having a random phase and amplitude component, comprising: a gain medium, a pump source, a highly reflective mirror, and a random phase and amplitude component. The pump source excites electrons in the gain medium from a low energy level to a high energy level. The highly reflective mirror is passed through by an amplified laser beam emitted by the gain medium. The random phase and amplitude component is disposed between the gain medium and the highly reflective mirror, and is passed through by the amplified laser beam emitted by the gain medium.Type: GrantFiled: July 2, 2014Date of Patent: December 18, 2018Assignee: NATIONAL TAIWAN UNIVERSITYInventors: Shih-Yu Tu, Hoang-Yan Lin
-
Publication number: 20170358779Abstract: An electroluminescent (EL) device is disclosed. An optically reflective concave structure includes a first surface and a second surface that lies at an angle relative to the first surface, wherein at least the first and second surfaces are optically reflective. One or more functional layers include a light emitting layer, disposed over the surfaces of the optically reflective concave structure, wherein at least one electroluminescent area of the light emitting layer is defined on the first surface. Especially, the ratio between the diameter of the first surface and the thickness of the one or more functional layers in the optically reflective concave structure is smaller than a constant value.Type: ApplicationFiled: August 4, 2017Publication date: December 14, 2017Inventors: Chung-Chih Wu, Chun-Yu Lin, Wei-Kai Lee, Min Jiao, Hoang Yan Lin, Guo-Dong Su
-
Patent number: 9640777Abstract: An electroluminescent (EL) device is disclosed, comprising a nanostructured composite electrode, one or more functional layers and an top electrode. The nanostructured composite electrode is consisting essentially of a first layer having a nanostructure and a second layer disposed on the nanostructure. The first and second layers are transparent and conducting, and one of the refractive-indexes of the first and second layers is lower than or equal to 1.65, and the other of the refractive-indexes of the first and second layers is higher than or equal to 1.75. One or more functional layers including a light emitting layer is disposed on the second layer. The top electrode is disposed on the functional layers. Especially, each of feature pits and each of intervals between the feature pits of the nanostructure of the first layer is smaller than or equal to a major wavelength of light emitted from the light emitting layer.Type: GrantFiled: May 24, 2016Date of Patent: May 2, 2017Assignee: NATIONAL TAIWAN UNIVERSITYInventors: Chung-Chih Wu, Chien-Yu Chen, Wei-Kai Lee, Hoang Yan Lin, Yi-Jiun Chen
-
Publication number: 20160351847Abstract: An electroluminescent (EL) device is disclosed, comprising a nanostructured composite electrode, one or more functional layers and an top electrode. The nanostructured composite electrode is consisting essentially of a first layer having a nanostructure and a second layer disposed on the nanostructure. The first and second layers are transparent and conducting, and one of the refractive-indexes of the first and second layers is lower than or equal to 1.65, and the other of the refractive-indexes of the first and second layers is higher than or equal to 1.75. One or more functional layers including a light emitting layer is disposed on the second layer. The top electrode is disposed on the functional layers. Especially, each of feature pits and each of intervals between the feature pits of the nanostructure of the first layer is smaller than or equal to a major wavelength of light emitted from the light emitting layer.Type: ApplicationFiled: May 24, 2016Publication date: December 1, 2016Inventors: Chung-Chih Wu, Chien-Yu Chen, Wei-Kai Lee, Hoang Yan Lin, Yi-Jiun Chen
-
Publication number: 20160268554Abstract: An electroluminescent (EL) device is disclosed. An optically reflective concave structure includes a first surface and a second surface that lies at an angle relative to the first surface, wherein at least the first and second surfaces are optically reflective. One or more functional layers include a light emitting layer, disposed over the surfaces of the optically reflective concave structure, wherein at least one electroluminescent area of the light emitting layer is defined on the first surface. Especially, the ratio between the width of the first surface and the thickness of the one or more functional layers in the optically reflective concave structure is smaller than a constant value.Type: ApplicationFiled: March 10, 2016Publication date: September 15, 2016Inventors: Chung-Chih Wu, Chun-Yu Lin, Wei-Kai Lee, Min Jiao, Hoang Yan Lin, Guo-Dong Su
-
Publication number: 20150194783Abstract: The present invention provides a partial random laser illumination device having a random phase and amplitude component, comprising: a gain medium, a pump source, a highly reflective mirror, and a random phase and amplitude component. The pump source excites electrons in the gain medium from a low energy level to a high energy level. The highly reflective mirror is passed through by an amplified laser beam emitted by the gain medium. The random phase and amplitude component is disposed between the gain medium and the highly reflective mirror, and is passed through by the amplified laser beam emitted by the gain medium.Type: ApplicationFiled: July 2, 2014Publication date: July 9, 2015Inventors: Shih-Yu TU, Hoang-Yan LIN