Patents by Inventor Hoiman Hung

Hoiman Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040180556
    Abstract: A method of treating a dielectric layer having a low dielectric constant, where the dielectric layer has been processed in a manner that causes a change in the dielectric constant of an affected region of the layer. The treatment of the affected region may comprise etching, sputtering, annealing, or combinations thereof. The treatment returns the dielectric constant of the dielectric layer to substantially the dielectric constant that existed before processing.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Kang-Lie Chiang, Mahmoud Dahimene, Xiaoye Zhao, Yan Ye, Gerardo A. Delgadino, Hoiman Hung, Li-Qun Xia, Giuseppina R. Conti
  • Patent number: 6762127
    Abstract: The present invention provides a novel etching technique for etching a layer of C-doped silicon oxide, such as a partially oxidized organo silane material. This technique, employing CH2F2/Ar chemistry at low bias and low to intermediate pressure, provides high etch selectivity to silicon oxide and improved selectivity to organic photoresist. Structures including a layer of partially oxidized organo silane material (1004) deposited on a layer of silicon oxide (1002) were etched according to the novel technique, forming relatively narrow trenches (1010, 1012, 1014, 1016, 1030, 1032, 1034 and 1036) and wider trenches (1020, 1022, 1040 and 1042). The technique is also suitable for forming dual damascene structures (1152, 1154 and 1156). In additional embodiments, manufacturing systems (1410) are provided for fabricating IC structures of the present invention. These systems include a controller (1400) that is adapted for interacting with a plurality of fabricating stations (1420, 1422, 1424, 1426 and 1428).
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: July 13, 2004
    Inventors: Yves Pierre Boiteux, Hui Chen, Ivano Gregoratto, Chang-Lin Hsieh, Hoiman Hung, Sum-Yee Betty Tang
  • Publication number: 20040007325
    Abstract: A method is provided that includes (1) receiving information about a substrate processed within a low K dielectric deposition subsystem from an integrated inspection system of the low K dielectric deposition subsystem; (2) determining an etch process to perform within an etch subsystem based at least in part on the information received from the inspection system of the low K dielectric deposition subsystem; and (3) directing the etch subsystem to etch at least one low K dielectric layer on the substrate based on the etch process. Other methods, systems, apparatus, data structures and computer program products are provided.
    Type: Application
    Filed: June 11, 2003
    Publication date: January 15, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Judon Tony Pan, Michael D. Armacost, Hoiman Hung, Hongwen Li, Arulkumar Shanmugasundram, Moshe Sarfaty, Dimitris P. Lymberopoulos, Mehul Naik
  • Publication number: 20030073321
    Abstract: The present invention provides a novel etching technique for etching a layer of C-doped silicon oxide, such as a partially oxidized organo silane material. This technique, employing CH2F2/Ar chemistry at low bias and low to intermediate pressure, provides high etch selectivity to silicon oxide and improved selectivity to organic photoresist. Structures including a layer of partially oxidized organo silane material (1004) deposited on a layer of silicon oxide (1002) were etched according to the novel technique, forming relatively narrow trenches (1010, 1012, 1014, 1016, 1030, 1032, 1034 and 1036) and wider trenches (1020, 1022, 1040 and 1042). The technique is also suitable for forming dual damascene structures (1152, 1154 and 1156). In additional embodiments, manufacturing systems (1410) are provided for fabricating IC structures of the present invention. These systems include a controller (1400) that is adapted for interacting with a plurality of fabricating stations (1420, 1422, 1424, 1426 and 1428).
    Type: Application
    Filed: August 23, 2001
    Publication date: April 17, 2003
    Applicant: Applied Material, Inc.
    Inventors: Yves Pierre Boiteux, Hui Chen, Ivano Gregoratto, Chang-Lin Hsieh, Hoiman Hung, Sum-Yee Betty Tang
  • Publication number: 20030037879
    Abstract: Apparatus for gas distribution in a semiconductor wafer processing chamber 200 having a roof 228. The roof 228 has a top surface 608 and a bottom surface 312. A recess 314 is disposed within the bottom surface 312 of the roof 228. A gas distribution plate 316 is disposed within the recess 314 and a material layer coating 320 is disposed upon the bottom surfaces 312/500 of the roof 228 and the gas distribution plate 316. The material layer coating 320 and the gas distribution plate 316 each have a plurality of apertures 322/404. The apertures 404 of the gas distribution plate 316 coincide with the apertures 322 in the material layer coating 320. The material layer coating 320 is formed from silicon carbide and most preferably is deposited by chemical vapor deposition (CVD). Both the roof 228 and gas distribution plate 316 are fabricated from silicon carbide.
    Type: Application
    Filed: August 24, 2001
    Publication date: February 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Farahmand E. Askarinam, Robert W. Wu, Jeremiah T. Pender, Gerardo A. Delgadino, Hoiman Hung, Ananda H. Kumar, Olga Regelman, Douglas A. Buchberger
  • Publication number: 20030000913
    Abstract: An oxide etching process, particularly useful for selectively etching oxide over a feature having a non-oxide composition, such as silicon nitride and especially when that feature has a corner that is prone to faceting during the oxide etch. The invention uses a heavy perfluorocarbon, for example, hexafluorobutadiene (C4F6) or hexafluorobenzene (C6F6). The fluorocarbon together with a substantial amount of a noble gas such as argon is excited into a high-density plasma in a reactor which inductively couples plasma source power into the chamber and RF biases the pedestal electrode supporting the wafer. A more strongly polymerizing fluorocarbon such as difluoromethane (CH2F2) is added in the over etch to protect the nitride corner. Oxygen or nitrogen may be added to counteract the polymerization. The same chemistry can be used in a magnetically enhanced reactive ion etcher (MERIE) or with a remote plasma source.
    Type: Application
    Filed: May 13, 2002
    Publication date: January 2, 2003
    Inventors: Hoiman Hung, Joseph P. Caulfield, Hongqing Shan, Ruiping Wang, Gerald Zheyao Yin
  • Patent number: 6432318
    Abstract: An oxide etching recipe including a heavy hydrogen-free fluorocarbon having F/C ratios less than 2 such as C4F6 or C5F8, an oxygen-containing gas such as O2, CO or CO2, a lighter fluorocarbon or hydrofluorocarbon, and a noble diluent gas such as Ar or Xe. The amounts of the first three gases are chosen such that the ratio (F—H)/(C—O) is at least 1.5 and no more than 2. Alternatively, the gas mixture may include the heavy fluorocarbon, carbon tetrafluoride, and the diluent with the ratio of the first two chosen such the ratio F/C is between 1.5 and 2.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: August 13, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Ji Ding, Hidehiro Kojiri, Yoshio Ishikawa, Keiji Horioka, Ruiping Wang, Robert W. Wu, Hoiman Hung
  • Patent number: 6387287
    Abstract: An oxide etching process, particularly useful for selectively etching oxide over a feature having a non-oxide composition, such as silicon nitride and especially when that feature has a corner that is prone to faceting during the oxide etch. The invention uses one of three hydrogen-free fluorocarbons having a low F/C ratio, specifically hexafluorobutadiene (C4F6), hexafluorocyclobutene (C4F6), and hexafluorobenzene (C6F6). At least hexafluorobutadiene has a boiling point below 10° C. and is commercially available. The fluorocarbon together with a substantial amount of a noble gas such as argon is excited into a high-density plasma in a reactor which inductively couples plasma source power into the chamber and RF biases the pedestal electrode supporting the wafer. Preferably, one of two two-step etch process is used. In the first, the source and bias power are reduced towards the end of the etch.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: May 14, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Hoiman Hung, Joseph P Caulfield, Hongqing Shan, Ruiping Wang, Gerald Zheyao Yin
  • Patent number: 6380096
    Abstract: An integrated in situ oxide etch process particularly useful for a counterbore dual-damascene structure over copper having in one inter-layer dielectric level a lower nitride stop layer, a lower oxide dielectric, a lower nitride stop layer, an upper oxide dielectric layer, and an anti-reflective coating (ARC). The process is divided into a counterbore etch and a trench etch with photolithography for each, and each step is preferably performed in a high-density plasma reactor having an inductively coupled plasma source primarily generating the plasma and a capacitively coupled pedestal supporting the wafer and producing the bias power. The counterbore etch preferably includes at least four substeps of opening the ARC, etching through the upper oxide and nitride layers, selectively etching the lower oxide layer but stopping on the lower nitride layer, and a post-etch treatment for removing residue.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: April 30, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Hoiman Hung, Joseph P Caulfield, Sum-Yee Betty Tang, Jian Ding, Tianzong Xu
  • Publication number: 20010008226
    Abstract: An integrated in situ oxide etch process particularly useful for a counterbore dual-damascene structure over copper having in one inter-layer dielectric level a lower nitride stop layer, a lower oxide dielectric, a lower nitride stop layer, an upper oxide dielectric layer, and an anti-reflective coating (ARC). The process is divided into a counterbore etch and a trench etch with photolithography for each, and each step is preferably performed in a high-density plasma reactor having an inductively coupled plasma source primarily generating the plasma and a capacitively coupled pedestal supporting the wafer and producing the bias power. The counterbore etch preferably includes at least four substeps of opening the ARC, etching through the upper oxide and nitride layers, selectively etching the lower oxide layer but stopping on the lower nitride layer, and a post-etch treatment for removing residue.
    Type: Application
    Filed: November 30, 1998
    Publication date: July 19, 2001
    Inventors: HOIMAN HUNG, JOSEPH P. CAULFIELD, SUM-YEE BETTY TANG, JIAN DING, TIANZONG XU