Patents by Inventor Hojjat Seyed Jamali

Hojjat Seyed Jamali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932735
    Abstract: High spherical particles for use in piezoelectric applications may be produced mixing a mixture comprising a graphene oxide-polyvinylidene fluoride (GO-PVDF) composite, a carrier fluid that is immiscible with the PVDF, and optionally an emulsion stabilizer at a temperature equal to or greater than a melting point or softening temperature of the PVDF to disperse the GO-PVDF composite in the carrier fluid, wherein the GO-PVDF composite has a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less; cooling the mixture to below the melting point or softening temperature of the PVDF to form GO-PVDF particles; and separating the GO-PVDF particles from the carrier fluid, wherein the GO-PVDF particles comprise the graphene oxide dispersed in the PVDF, and wherein the GO-PVDF particles have a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 19, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Robert Claridge, Hojjat Seyed Jamali
  • Patent number: 11905381
    Abstract: A method for producing polyimide microparticles may comprise: combining a diamine and a dianhydride in a first dry, high boiling point solvent; reacting the diamine and the dianhydride to produce a mixture comprising poly(amic acid) (PAA) and the first dry, high boiling point solvent; emulsifying the mixture in a matrix fluid that is immiscible with the first dry, high boiling point solvent using an emulsion stabilizer to form a precursor emulsion that is an oil-in-oil emulsion; and heating the precursor emulsion during and/or after formation to a temperature sufficient to polymerize the PAA to form the polyimide microparticles.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: February 20, 2024
    Assignee: Xerox Corporation
    Inventors: Hojjat Seyed Jamali, Valerie M. Farrugia
  • Publication number: 20240026104
    Abstract: A method of producing thermoplastic particles may comprise: mixing a melt emulsion comprising (a) a continuous phase that comprises a carrier fluid having a polarity Hansen solubility parameter (dP) of about 7 MPa0.5 or less, (b) a dispersed phase that comprises a dispersing fluid having a dP of about 8 MPa0.5 or more, and (c) an inner phase that comprises a thermoplastic polyester at a temperature greater than a melting point or softening temperature of the thermoplastic polyester and at a shear rate sufficiently high to disperse the thermoplastic polyester in the dispersed phase; and cooling the melt emulsion to below the melting point or softening temperature of the thermoplastic polyester to form solidified particles comprising the thermoplastic polyester.
    Type: Application
    Filed: October 4, 2023
    Publication date: January 25, 2024
    Applicant: Xerox Corporation
    Inventors: Hojjat Seyed JAMALI, Valerie M. FARRUGIA
  • Publication number: 20230417668
    Abstract: The present invention is directed to an improved surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) sensors, improved SPR and LSPR sensor surface chemistry, and methods and systems for improved detection of analytes in SPR and LSPR. Use of the SPR and LSPR sensors described herein improves signal amplification, and thus, provides for higher signal-to-noise, in detection of various analytes, such as proteins, antibodies, carbohydrates, and nucleic acid molecules.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Inventors: Chanel LEONG, Hojjat Seyed JAMALI
  • Patent number: 11814494
    Abstract: A method of producing thermoplastic particles may comprise: mixing a melt emulsion comprising (a) a continuous phase that comprises a carrier fluid having a polarity Hansen solubility parameter (dP) of about 7 MPa0.5 or less, (b) a dispersed phase that comprises a dispersing fluid having a dP of about 8 MPa0.5 or more, and (c) an inner phase that comprises a thermoplastic polyester at a temperature greater than a melting point or softening temperature of the thermoplastic polyester and at a shear rate sufficiently high to disperse the thermoplastic polyester in the dispersed phase; and cooling the melt emulsion to below the melting point or softening temperature of the thermoplastic polyester to form solidified particles comprising the thermoplastic polyester.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 14, 2023
    Assignee: Xerox Corporation
    Inventors: Hojjat Seyed Jamali, Valerie M. Farrugia
  • Patent number: 11643503
    Abstract: A method of synthesizing polyamide microparticles may comprise: dehydrating and shearing a mixture comprising a matrix fluid, an emulsion stabilizer at about 0.01 wt % to about 50 wt % based on the weight of the matrix fluid, a solvent at about 13 wt % to about 75 wt % based on the weight of the matrix fluid, and a cyclic amide monomer at about 20 wt % to about 90 wt % based on the weight of the matrix fluid to yield an emulsion having a water content of about 1 wt % or less based on the total weight of the emulsion; adding a deprotonating agent to the emulsion at a concentration of about 0.01 wt % to about 1 wt % based on the weight of the matrix fluid; and contacting the emulsion with a polymerization initiator under conditions effective to polymerize the cyclic amide monomer into a plurality of polyamide microparticles.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 9, 2023
    Assignee: XEROX CORPORATION
    Inventor: Hojjat Seyed Jamali
  • Publication number: 20230135781
    Abstract: A method of synthesizing polyamide microparticles may comprise: dehydrating and shearing a mixture comprising a matrix fluid, an emulsion stabilizer at about 0.01 wt % to about 50 wt % based on the weight of the matrix fluid, a solvent at about 13 wt % to about 75 wt % based on the weight of the matrix fluid, and a cyclic amide monomer at about 20 wt % to about 90 wt % based on the weight of the matrix fluid to yield an emulsion having a water content of about 1 wt % or less based on the total weight of the emulsion; adding a deprotonating agent to the emulsion at a concentration of about 0.01 wt % to about 1 wt % based on the weight of the matrix fluid; and contacting the emulsion with a polymerization initiator under conditions effective to polymerize the cyclic amide monomer into a plurality of polyamide microparticles.
    Type: Application
    Filed: December 28, 2022
    Publication date: May 4, 2023
    Applicant: Xerox Corporation
    Inventor: Hojjat Seyed JAMALI
  • Publication number: 20220396674
    Abstract: High spherical particles for use in piezoelectric applications may be produced mixing a mixture comprising a graphene oxide-polyvinylidene fluoride (GO-PVDF) composite, a carrier fluid that is immiscible with the PVDF, and optionally an emulsion stabilizer at a temperature equal to or greater than a melting point or softening temperature of the PVDF to disperse the GO-PVDF composite in the carrier fluid, wherein the GO-PVDF composite has a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less; cooling the mixture to below the melting point or softening temperature of the PVDF to form GO-PVDF particles; and separating the GO-PVDF particles from the carrier fluid, wherein the GO-PVDF particles comprise the graphene oxide dispersed in the PVDF, and wherein the GO-PVDF particles have a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 15, 2022
    Applicant: Xerox Corporation
    Inventors: Valerie M. Farrugia, Robert Claridge, Hojjat Seyed Jamali
  • Publication number: 20220363843
    Abstract: A method for producing polyimide microparticles may comprise: combining a diamine and a dianhydride in a first dry, high boiling point solvent; reacting the diamine and the dianhydride to produce a mixture comprising poly(amic acid) (PAA) and the first dry, high boiling point solvent; emulsifying the mixture in a matrix fluid that is immiscible with the first dry, high boiling point solvent using an emulsion stabilizer to form a precursor emulsion that is an oil-in-oil emulsion; and heating the precursor emulsion during and/or after formation to a temperature sufficient to polymerize the PAA to form the polyimide microparticles.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 17, 2022
    Applicant: Xerox Corporation
    Inventors: Hojjat Seyed Jamali, Valerie M. Farrugia
  • Publication number: 20220010066
    Abstract: A method of synthesizing polyamide microparticles may comprise: dehydrating and shearing a mixture comprising a matrix fluid, an emulsion stabilizer at about 0.01 wt % to about 50 wt % based on the weight of the matrix fluid, a solvent at about 13 wt % to about 75 wt % based on the weight of the matrix fluid, and a cyclic amide monomer at about 20 wt % to about 90 wt % based on the weight of the matrix fluid to yield an emulsion having a water content of about 1 wt % or less based on the total weight of the emulsion; adding a deprotonating agent to the emulsion at a concentration of about 0.01 wt % to about 1 wt % based on the weight of the matrix fluid; and contacting the emulsion with a polymerization initiator under conditions effective to polymerize the cyclic amide monomer into a plurality of polyamide microparticles.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 13, 2022
    Applicant: Xerox Corporation
    Inventor: Hojjat Seyed Jamali
  • Patent number: 10982107
    Abstract: A metal nanoparticle ink composition comprises an ink vehicle and a plurality of metal nanoparticles dispersed in the ink vehicle. The metal nanoparticles including both a first organic stabilizing group and a second organic stabilizing group attached thereto, the first organic stabilizing group being different from the second organic stabilizing group, the first organic stabilizing group being selected from the group consisting of decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine and mixtures thereof, and the second organic stabilizing group being selected from group consisting of butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine and mixtures thereof.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: April 20, 2021
    Assignee: XEROX CORPORATION
    Inventors: Hojjat Seyed Jamali, Adela Goredema, Biby Esther Abraham, Jonathan Lee, Cuong Vong
  • Publication number: 20210070954
    Abstract: A method of producing thermoplastic particles may comprise: mixing a melt emulsion comprising (a) a continuous phase that comprises a carrier fluid having a polarity Hansen solubility parameter (dP) of about 7 MPa0.5 or less, (b) a dispersed phase that comprises a dispersing fluid having a dP of about 8 MPa0.5 or more, and (c) an inner phase that comprises a thermoplastic polyester at a temperature greater than a melting point or softening temperature of the thermoplastic polyester and at a shear rate sufficiently high to disperse the thermoplastic polyester in the dispersed phase; and cooling the melt emulsion to below the melting point or softening temperature of the thermoplastic polyester to form solidified particles comprising the thermoplastic polyester.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Hojjat Seyed Jamali, Valerie M. Farrugia
  • Patent number: 10821658
    Abstract: Disclosed herein is a printing method for forming a three dimensional article. The method includes providing a first 3D structural material; depositing a metal nanoparticle ink composition on a surface of the first 3D structural material; annealing the metal nanoparticle ink composition at a temperature of between 60° C. and 100° C. to form the conductive article on the first 3D structural material; and optionally forming a second 3D structural material over the conductive article.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: November 3, 2020
    Assignee: XEROX CORPORATION
    Inventors: Adela Goredema, Chad S. Smithson, Michelle N. Chretien, Biby Esther Abraham, Hojjat Seyed Jamali
  • Patent number: 10752797
    Abstract: A nanoparticle composition comprising a plurality of stabilized metal-containing nanoparticles comprising silver and/or a silver alloy composite. The stabilized metal-containing nanoparticles are prepared by a method comprising reacting a silver compound with a reducing agent comprising a hydrazine compound by incrementally adding the silver compound to a first mixture comprising the reducing agent, a stabilizer and a solvent. The stabilizer comprises a mixture of a first organoamine and a second organoamine, an alkyl moiety of the first organoamine having a longer carbon chain length than the alkyl moiety of the second organoamine. The first organoamine is selected from the group consisting of decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine and mixtures thereof. The second organoamine is selected from group consisting of butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine and mixtures thereof.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: August 25, 2020
    Assignee: XEROX CORPORATION
    Inventors: Hojjat Seyed Jamali, Adela Goredema, Naveen Chopra, Jonathan Lee, Barkev Keoshkerian
  • Publication number: 20200031041
    Abstract: Disclosed herein is a printing method for forming a three dimensional article. The method includes providing a first 3D structural material; depositing a metal nanoparticle ink composition on a surface of the first 3D structural material; annealing the metal nanoparticle ink composition at a temperature of between 60° C. and 100° C. to form the conductive article on the first 3D structural material; and optionally forming a second 3D structural material over the conductive article.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 30, 2020
    Inventors: Adela Goredema, Chad S. Smithson, Michelle N. Chretien, Biby Esther Abraham, Hojjat Seyed Jamali
  • Publication number: 20200032088
    Abstract: A metal nanoparticle ink composition comprises an ink vehicle and a plurality of metal nanoparticles dispersed in the ink vehicle. The metal nanoparticles including both a first organic stabilizing group and a second organic stabilizing group attached thereto, the first organic stabilizing group being different from the second organic stabilizing group, the first organic stabilizing group being selected from the group consisting of decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine and mixtures thereof, and the second organic stabilizing group being selected from group consisting of butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine and mixtures thereof.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 30, 2020
    Applicant: XEROX CORPORATION
    Inventors: Hojjat Seyed Jamali, Adela Goredema, Biby Esther Abraham, Jonathan Lee, Cuong Vong
  • Publication number: 20200032092
    Abstract: A nanoparticle composition comprising a plurality of stabilized metal-containing nanoparticles comprising silver and/or a silver alloy composite. The stabilized metal-containing nanoparticles are prepared by a method comprising reacting a silver compound with a reducing agent comprising a hydrazine compound by incrementally adding the silver compound to a first mixture comprising the reducing agent, a stabilizer and a solvent. The stabilizer comprises a mixture of a first organoamine and a second organoamine, an alkyl moiety of the first organoamine having a longer carbon chain length than the alkyl moiety of the second organoamine. The first organoamine is selected from the group consisting of decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine and mixtures thereof. The second organoamine is selected from group consisting of butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine and mixtures thereof.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 30, 2020
    Applicant: XEROX CORPORATION
    Inventors: Hojjat Seyed Jamali, Adela Goredema, Naveen Chopra, Jonathan Lee, Barkev Keoshkerian