Patents by Inventor Holger Bartolf

Holger Bartolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220231120
    Abstract: A transistor cell including a semiconductor substrate, which has a front side and a rear side, the front side being situated opposite the rear side. An epitaxial layer is situated on the front side. Channel regions are situated on the epitaxial layer. Source regions are situated on the channel regions. A trench and field shielding regions extending from the front side of the semiconductor substrate into the epitaxial layer, the field shielding regions each being situated laterally spaced apart from the trench and the trench having a shallower depth than the field shielding regions. An implanted expansion region having a particular thickness is situated below the trench.
    Type: Application
    Filed: May 18, 2020
    Publication date: July 21, 2022
    Inventors: Alberto Martinez-Limia, Stephan Schwaiger, Daniel Krebs, Dick Scholten, Holger Bartolf, Jan-Hendrik Alsmeier, Wolfgang Feiler
  • Publication number: 20220209006
    Abstract: A semiconductor component. The semiconductor component includes a semiconductor substrate that includes a first side, on which an epitaxial layer is situated. On the epitaxial layer, body regions are sectionally situated, and on the body regions, source regions are situated. A plurality of first trenches and a plurality of second trenches extending starting from the source regions into the epitaxial layer. The first trenches have a greater depth than the second trenches. A second trench sectionally extends into a first trench in each case. On a trench surface of the first trenches, a layer including a first doping is situated in each case. The first trenches are filled with a first material including a second doping, the first doping having a higher value than the second doping.
    Type: Application
    Filed: March 25, 2020
    Publication date: June 30, 2022
    Inventors: Alberto Martinez-Limia, Alfred Goerlach, Holger Bartolf, Stephan Schwaiger, Wolfgang Feiler
  • Publication number: 20210005711
    Abstract: A vertical power transistor, including a semiconductor substrate, on which at least one first layer and one second layer are situated, the second layer being situated on the first layer, and the first layer including a first semiconductor material; and a plurality of trenches, which extend from an upper side of the second layer into the first layer. The first layer has a first doping, and each trench has a first region, which extends from the respective trench bottom to a first level. Each first region is filled with a second semiconductor material, which has a second doping. The first semiconductor material and the second semiconductor material are different. Each first region is connected electrically to the second layer. The second doping is higher than the first doping. Heterojunctions, which behave as unipolar, rectifying junctions, form between the first layer and each first region.
    Type: Application
    Filed: November 19, 2018
    Publication date: January 7, 2021
    Inventors: Alberto Martinez-Limia, Alfred Goerlach, Holger Bartolf, Stephan Schwaiger, Wolfgang Feiler
  • Publication number: 20200273986
    Abstract: A vertical power transistor including a semiconductor substrate, which has a front side on which at least one epitaxial layer, one channel layer, and one source layer are situated. The epitaxial layer includes a first semiconductor material which has a first doping, and a plurality of first trenches and second trenches, the first trenches and the second trenches being situated alternatingly and extending perpendicularly at least into the channel layer starting from a surface of the source layer, an area extending perpendicularly into the epitaxial layer, starting from an underside of each first trench bottom, the area including a second semiconductor material which encompasses a second doping.
    Type: Application
    Filed: August 21, 2018
    Publication date: August 27, 2020
    Inventors: Holger Bartolf, Wolfgang Feiler, Stephan Schwaiger, Jan-Hendrik Alsmeier, Matthias Neubauer
  • Patent number: 10553437
    Abstract: A method of manufacturing a semiconductor device is provided with: (a) providing a wide bandgap substrate product, (b) forming source regions by applying a first mask with a first and second mask layer and applying an n dopant, forming a well layer by removing such part of the first mask, which is arranged between the two source regions, and applying a p dopant, forming two channel regions by forming a third mask by performing an etching step, by which the first mask layer is farther removed at the openings than the second mask layer, and then removing the second mask layer, wherein the remaining first mask layer forms a third mask and applying a p dopant, wherein a well layer depth is at least as large as a channel layer depth, (c) after step (b) for forming a plug applying a fourth mask, which covers the source regions and the channel layers and applying a p fourth dopant to a greater depth than the well layer depth and with a higher doping concentration than the well layers.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: February 4, 2020
    Assignee: ABB Schweiz AG
    Inventors: Holger Bartolf, Munaf Rahimo, Lars Knoll, Andrei Mihaila, Renato Minamisawa
  • Patent number: 10516022
    Abstract: A wide bandgap semiconductor device is comprising an (n?) doped drift layer between a first main side and a second main side. On the first main side, n doped source regions are arranged which are laterally surrounded by p doped channel layers having a channel layer depth. P+ doped well layers having a well layer depth, which is at least as large as the channel layer depth is arranged at the bottom of the source regions. A p++ doped plug extends from a depth, which is at least as deep as the source layer depth and less deep than the well layer depth, to a plug depth, which is as least as deep as the well layer depth, and having a higher doping concentration than the well layers, is arranged between the source regions and well layers. On the first main side, an ohmic contact contacts as a first main electrode the source regions, the well layers and the plug.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: December 24, 2019
    Assignee: ABB Schweiz AG
    Inventors: Holger Bartolf, Munaf Rahimo, Lars Knoll, Andrei Mihaila, Renato Minamisawa
  • Patent number: 10361082
    Abstract: A method of manufacturing a semiconductor device is provided with: (a) providing a wide bandgap substrate product, (b) for forming two channel layers applying a first mask and applying a p first dopant, for forming two source regions forming a second mask by applying a further layer on the lateral sides of the first mask and applying an n second dopant, for forming two well layers forming a third mask by removing such part of the second mask between the source regions and applying a p third dopant, wherein a well layer depth is at least as large as a channel layer depth, (c) after step (b) for forming a plug applying a fourth mask, which covers the source regions and the channel layers and applying a p fourth dopant to a greater depth than the well layer depth and with a higher doping concentration than the well layers; wherein the well layers surround the plug in the lateral direction and separate it from the two source regions.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: July 23, 2019
    Assignee: ABB Schweiz AG
    Inventors: Holger Bartolf, Munaf Rahimo, Lars Knoll, Andrei Mihaila, Renato Minamisawa
  • Publication number: 20180350602
    Abstract: A method of manufacturing a semiconductor device is provided with: (a) providing a wide bandgap substrate product, (b) forming source regions by applying a first mask with a first and second mask layer and applying an n dopant, forming a well layer by removing such part of the first mask, which is arranged between the two source regions, and applying a p dopant, forming two channel regions by forming a third mask by performing an etching step, by which the first mask layer is farther removed at the openings than the second mask layer, and then removing the second mask layer, wherein the remaining first mask layer forms a third mask and applying a p dopant, wherein a well layer depth is at least as large as a channel layer depth, (c) after step (b) for forming a plug applying a fourth mask, which covers the source regions and the channel layers and applying a p fourth dopant to a greater depth than the well layer depth and with a higher doping concentration than the well layers.
    Type: Application
    Filed: June 4, 2018
    Publication date: December 6, 2018
    Inventors: Holger Bartolf, Munaf Rahimo, Lars Knoll, Andrei Mihaila, Renato Minamisawa
  • Publication number: 20180350943
    Abstract: A wide bandgap semiconductor device is comprising an (n?) doped drift layer between a first main side and a second main side. On the first main side, n doped source regions are arranged which are laterally surrounded by p doped channel layers having a channel layer depth. P+ doped well layers having a well layer depth, which is at least as large as the channel layer depth is arranged at the bottom of the source regions. A p++ doped plug extends from a depth, which is at least as deep as the source layer depth and less deep than the well layer depth, to a plug depth, which is as least as deep as the well layer depth, and having a higher doping concentration than the well layers, is arranged between the source regions and well layers. On the first main side, an ohmic contact contacts as a first main electrode the source regions, the well layers and the plug.
    Type: Application
    Filed: June 4, 2018
    Publication date: December 6, 2018
    Inventors: Holger Bartolf, Munaf Rahimo, Lars Knoll, Andrei Mihaila, Renato Minamisawa
  • Publication number: 20180286963
    Abstract: A method of manufacturing a semiconductor device is provided with: (a) providing a wide bandgap substrate product, (b) for forming two channel layers applying a first mask and applying a p first dopant, for forming two source regions forming a second mask by applying a further layer on the lateral sides of the first mask and applying an n second dopant, for forming two well layers forming a third mask by removing such part of the second mask between the source regions and applying a p third dopant, wherein a well layer depth is at least as large as a channel layer depth, (c) after step (b) for forming a plug applying a fourth mask, which covers the source regions and the channel layers and applying a p fourth dopant to a greater depth than the well layer depth and with a higher doping concentration than the well layers; wherein the well layers surround the plug in the lateral direction and separate it from the two source regions.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Holger Bartolf, Munaf Rahimo, Lars Knoll, Andrei Mihaila, Renato Minamisawa