Patents by Inventor Holger Doemer

Holger Doemer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230109124
    Abstract: A particle beam system comprises a particle beam column, a detection system and a controller. The particle beam column is configured to generate a particle beam and to direct it onto a sample, as a result of which charged particles are emitted by the sample. The detection system detects charged particles and comprises: an electrode, which can accelerate the charged particles; a potential source, which applies an adjustable electrical potential to the electrode; a scintillator; and a light detector, which outputs a detection signal. The controller controls the potential source and is configured to change the potential on the basis of the detection signal such that the scintillator operates outside its saturation and such that the light detector operates outside its saturation.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 6, 2023
    Inventors: Gero Walter, Holger Doemer, Wolfgang Berger
  • Patent number: 11355310
    Abstract: A method is carried out with the aid of a particle beam microscope which includes a particle beam column for producing a beam of charged particles, the particle beam column having an optical axis. Furthermore, the particle beam microscope includes a holding device for holding the extracted micro-sample. The method includes holding the extracted micro-sample and an adjacent hinge element via the holding device. The micro-sample adopts a first spatial orientation relative to the optical axis. The method also includes producing a bending edge in the hinge element by way of irradiation with a beam of charged particles such that the adjacent micro-sample is moved in space and the spatial orientation of the micro-sample is altered. The method further includes holding the micro-sample in a second spatial orientation relative to the optical axis, wherein the second spatial orientation differs from the first spatial orientation.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: June 7, 2022
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Holger Doemer, Andreas Schmaunz
  • Publication number: 20220130639
    Abstract: The invention relates to a method for ablating a material (1) from a material unit (502) and for arranging the material (1) on an object (125), the object (125) being arranged in a particle beam apparatus. Further, the invention relates to a computer program product, and to a particle beam apparatus for carrying out the method. The method comprises feeding a particle beam with charged particles onto the material (1), wherein the material (1) is arranged on the material unit (502) and/or wherein the material unit (502) is formed from the material (1), wherein the material (1) is ablatable from the material unit (502) and wherein the material (1) is arranged on the material unit (502) at a distance from the object (125). Further, the method comprises ablating the ablatable material (1) arranged on the material unit (502) from the material unit (502) using the particle beam, and arranging the ablated material (514) on the object (125).
    Type: Application
    Filed: May 5, 2021
    Publication date: April 28, 2022
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Holger Doemer, Michele Nicoletti, Andreas Schmaunz
  • Publication number: 20210296087
    Abstract: A method is carried out with the aid of a particle beam microscope which includes a particle beam column for producing a beam of charged particles, the particle beam column having an optical axis. Furthermore, the particle beam microscope includes a holding device for holding the extracted micro-sample. The method includes holding the extracted micro-sample and an adjacent hinge element via the holding device. The micro-sample adopts a first spatial orientation relative to the optical axis. The method also includes producing a bending edge in the hinge element by way of irradiation with a beam of charged particles such that the adjacent micro-sample is moved in space and the spatial orientation of the micro-sample is altered. The method further includes holding the micro-sample in a second spatial orientation relative to the optical axis, wherein the second spatial orientation differs from the first spatial orientation.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Inventors: Holger Doemer, Andreas Schmaunz
  • Patent number: 10347461
    Abstract: A method relates to the in situ preparation of a microscopic specimen is carried out using a particle beam device, which includes a particle beam column for producing a focused beam of charged particles, a specimen receptacle for receiving a specimen block, and a detector for detecting interaction products of the interaction between particle beam and specimen material. The method includes: providing a specimen block having an exposed structure that comprises a specimen region of interest; producing a bending edge in the exposed structure by the action of the particle beam such that at least some of the exposed structure is shaped in the direction of the incident particle beam; and moving the specimen receptacle, in which the specimen block is received, so that a specimen region, which is enclosed by the shaped structure, is observable and/or processable in the particle beam device.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: July 9, 2019
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Andreas Schmaunz, Holger Doemer
  • Publication number: 20190019650
    Abstract: A method relates to the in situ preparation of a microscopic specimen is carried out using a particle beam device, which includes a particle beam column for producing a focused beam of charged particles, a specimen receptacle for receiving a specimen block, and a detector for detecting interaction products of the interaction between particle beam and specimen material. The method includes: providing a specimen block having an exposed structure that comprises a specimen region of interest; producing a bending edge in the exposed structure by the action of the particle beam such that at least some of the exposed structure is shaped in the direction of the incident particle beam; and moving the specimen receptacle, in which the specimen block is received, so that a specimen region, which is enclosed by the shaped structure, is observable and/or processable in the particle beam device.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 17, 2019
    Inventors: Andreas Schmaunz, Holger Doemer
  • Patent number: 9496116
    Abstract: The system described herein determines a distance of a component of a particle beam device from an object to the particle beam device and sets a position of the component in the particle beam device. The component is moved from a first starting position of the component relatively in the direction of an object, which is located in a second starting position, until the component makes contact with the object. When the component makes contact with the object, an adjusting path covered by the component and/or the object during the movement is determined. The adjusting path runs along a straight line that joins a first point on the component in the first starting position to a second point on the object in the second starting position that is arranged closest to the first point on the component along this line. The adjusting path corresponds to the distance.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: November 15, 2016
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Holger Doemer, Andreas Schmaunz
  • Publication number: 20160118216
    Abstract: The system described herein determines a distance of a component of a particle beam device from an object to the particle beam device and sets a position of the component in the particle beam device. The component is moved from a first starting position of the component relatively in the direction of an object, which is located in a second starting position, until the component makes contact with the object. When the component makes contact with the object, an adjusting path covered by the component and/or the object during the movement is determined. The adjusting path runs along a straight line that joins a first point on the component in the first starting position to a second point on the object in the second starting position that is arranged closest to the first point on the component along this line. The adjusting path corresponds to the distance.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 28, 2016
    Inventors: Holger Doemer, Andreas Schmaunz
  • Patent number: 9308601
    Abstract: A processing system for micro processing. The processing system comprises a laser configured to generate a laser beam for performing laser processing within a preparation chamber. The processing system further comprises a transmission window, configured such that the laser beam enters into the preparation chamber through the transmission window. The processing system further comprises a fastening flange for fixing the transmission window relative to the preparation chamber, and a laser shield configured to provide, in a first arrangement of the laser shield, glare protection from a passage of the laser beam from a laser beam housing to the preparation chamber. The laser shield is movably mounted for movement between the first arrangement and a second arrangement of the laser shield, wherein in the second arrangement, at least one of the transmission window and the fastening flange is separable from the processing system.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: April 12, 2016
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Volker Himmelsbach, Sebastian Alscher, Holger Doemer, Bernd Stenke, Ulrich Spittler-Herrmann
  • Publication number: 20160020064
    Abstract: An apparatus for focusing and for storage of ions and an apparatus for separation of a first pressure area from a second pressure area are disclosed, in particular for an analysis apparatus for ions. A particle beam device may have at least one of the abovementioned apparatuses. A container for holding ions and at least one multipole unit are provided. The multipole unit has a through-opening with a longitudinal axis as well as a multiplicity of electrodes. A first set of the electrodes is at a first radial distance from the longitudinal axis. A second set of the electrodes is in each case at a second radial distance from the longitudinal axis. The first radial distance is less than the second radial distance. Alternatively or additionally, the apparatus may have an elongated opening with a radial extent. The opening has a longitudinal extent which is greater than the radial extent.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Alexander Laue, Albrecht Glasmachers, Christian Hendrich, Dirk Preikszas, Michel Aliman, Hubert Mantz, Ulrike Zeile, Holger Doemer
  • Patent number: 9230789
    Abstract: An apparatus for focusing and for storage of ions and an apparatus for separation of a first pressure area from a second pressure area are disclosed, in particular for an analysis apparatus for ions. A particle beam device may have at least one of the abovementioned apparatuses. A container for holding ions and at least one multipole unit are provided. The multipole unit has a through-opening with a longitudinal axis as well as a multiplicity of electrodes. A first set of the electrodes is at a first radial distance from the longitudinal axis. A second set of the electrodes is in each case at a second radial distance from the longitudinal axis. The first radial distance is less than the second radial distance. Alternatively or additionally, the apparatus may have an elongated opening with a radial extent. The opening has a longitudinal extent which is greater than the radial extent.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: January 5, 2016
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Alexander Laue, Albrecht Glasmachers, Christian Hendrich, Dirk Preikszas, Michel Aliman, Hubert Mantz, Ulrike Zeile, Holger Dömer
  • Patent number: 9006681
    Abstract: A process of preparing a lamella from a substrate includes manufacturing a protection strip on an edge portion of the lamella to be prepared from the substrate, and preparing the lamella, wherein the manufacturing the protection strip includes a first phase of activating a surface area portion of the substrate, and a second phase of electron beam assisted deposition of the protective strip on the activated surface area portion from the gas phase.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 14, 2015
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Heinz Wanzenboeck, Wolfram Buehler, Holger Doemer, Carl Kuebler, Daniel Fischer, Gottfried Hochleitner, Emmerich Bertagnolli
  • Patent number: 8957371
    Abstract: Producing images of a specimen includes introducing a specimen into a specimen chamber of a particle-beam device, selecting a specific position on the surface of the specimen, supplying a contrast-agent precursor on the specific position, providing a particle beam and/or a light beam, guiding the particle beam and/or the light beam onto the specific position, applying a contrast-agent layer to the specific position as a result of the interaction of the particle beam and/or the light beam with the contrast-agent precursor, leaving the contrast-agent layer on the surface of the specimen for a predetermined amount of time. During the predetermined amount of time, a first part of the contrast-agent layer diffuses into the specimen and a second part of the contrast-agent layer remains on the surface of the specimen. The specimen is imaged using an optical device and/or a particle-optical device and/or using the particle beam.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 17, 2015
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Elke Haustein, Wolfram Bühler, Camille Stebler, Holger Dömer
  • Publication number: 20140326874
    Abstract: An apparatus for transmission of energy of an ion to at least one gas particle and/or for transportation of an ion and a particle beam device having an apparatus such as this are disclosed. In particular, a container is provided, in which a gas is arranged which has gas particles, wherein the container has a transport axis. Furthermore, at least one first multipole unit and at least one second multipole unit are provided, which are arranged along the transport axis. The first multipole unit and the second multipole unit are formed by printed circuit boards. Furthermore, an electronic circuit is provided, which provides each multipole unit with a potential, such that a potential gradient is generated, in particular along the transport axis.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 6, 2014
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Albrecht Glasmachers, Alexander Laue, Michel Aliman, Hubert Mantz, Ulrike Zeile, Holger Doemer
  • Patent number: 8841579
    Abstract: A processing system includes a common base, an object mount configured to hold an object for inspection or processing, and at least one aperture plate provided on the object mount. The aperture plate has at least one aperture The processing system also includes a laser device mounted on the common base and configured to scan a laser beam across a scan region, and a transport device configured to displace the object mount relative to the common base from a first position to a second position. When the object mount is in the first position, the object and the at least one aperture are positioned within the scan region of the laser device. The processing system also includes at least one light guide provided on the object mount. The light guide has an input port provided by the at least one aperture, and an output port.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: September 23, 2014
    Assignee: Carl Zeiss Microscopy GmbH
    Inventor: Holger Doemer
  • Publication number: 20140191126
    Abstract: A process of preparing a lamella from a substrate includes manufacturing a protection strip on an edge portion of the lamella to be prepared from the substrate, and preparing the lamella, wherein the manufacturing the protection strip includes a first phase of activating a surface area portion of the substrate, and a second phase of electron beam assisted deposition of the protective strip on the activated surface area portion from the gas phase.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Heinz Wanzenboeck, Wolfram Buehler, Holger Doemer, Carl Kuebler, Daniel Fischer, Gottfried Hochleitner, Emmerich Bertagnolli
  • Patent number: 8693008
    Abstract: A method includes using a scanner to scan a laser beam along a scan path, and detecting light intensities caused by laser light of the laser beam incident on a detection cross-section. The method also includes determining a position of the detection cross-section relative to the laser scanner based on the detected light intensities. The scan path includes, in a plane which includes the detection cross-section, a first partial path and a second partial path which extend adjacent to each other and at a distance from each other which is: a) smaller than a diameter of the detection cross-section plus a diameter of the laser beam in the plane which includes the detection cross-section; and b) greater than 0.3 times the diameter of the laser beam in the plane which includes the detection cross-section or greater than 0.3 times the diameter of the detection cross-section.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: April 8, 2014
    Assignees: Carl Zeiss Microscopy GmbH, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Holger Doemer, Ruediger Rosenkranz
  • Publication number: 20130341313
    Abstract: A processing system for micro processing. The processing system comprises a laser configured to generate a laser beam for performing laser processing within a preparation chamber. The processing system further comprises a transmission window, configured such that the laser beam enters into the preparation chamber through the transmission window. The processing system further comprises a fastening flange for fixing the transmission window relative to the preparation chamber, and a laser shield configured to provide, in a first arrangement of the laser shield, glare protection from a passage of the laser beam from a laser beam housing to the preparation chamber. The laser shield is movably mounted for movement between the first arrangement and a second arrangement of the laser shield, wherein in the second arrangement, at least one of the transmission window and the fastening flange is separable from the processing system.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 26, 2013
    Inventors: Volker Himmelsbach, Sebastian Alscher, Holger Doemer, Bernd Stenke, Ulrich Spittler-Herrmann
  • Patent number: 8558174
    Abstract: A processing system includes a particle beam column for generating a particle beam directed to a first processing location; a laser system for generating a laser beam directed to a second processing location located at a distance from the first processing location; and a protector including an actuator and a plate connected to the actuator. The actuator is configured to move the plate between a first position in which it protects a component of the particle beam column from particles released from the object by the laser beam and a second position in which the component of the particle beam column is not protected from particles released from the object by the laser beam.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: October 15, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Holger Doemer, Stefan Martens, Walter Mack
  • Patent number: 8507854
    Abstract: A particle beam system 1 for cleaning itself comprises an irradiation system to direct electromagnetic radiation onto the surfaces to be cleaned and a supply system 61 to supply a precursor gas to the interior of the vacuum chamber 11 of the particle beam system 1. The precursor gas is activated in a vicinity of the surfaces to be cleaned and is converted into a reaction gas which reacts with the contaminants present on the irradiated surfaces such that said contaminants may be pumped out then.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: August 13, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Wolfram Buehler, Holger Doemer, Matthias Lang, Joerg Stodolka, Peter Roediger, Emmerich Bertagnolli, Heinz Wanzenboeck