Patents by Inventor Holger Hörich

Holger Hörich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10074382
    Abstract: The present document relates to the determination of a 200 bitrate related to an encoded bitstream, and describes a method for determining an estimate of a bitrate of a bitstream comprising a sequence of frames comprising a varying number of bitsand corresponding to excerpts of an audio and/or video signal. At least two frames of the sequence of frames comprise a parameter indicative of a processing delay for the corresponding frame. The method comprises determining: a total number of bits for a subsequence of frames from the bitstream; a corrected number 201 of frames based on a number of frames comprised within the subsequence and the parameters of at least two frames of the subsequence; and a lower bitrate bound and an upper bitrate bound of the bitrate based on the total number of bits, the corrected number of frames and a frame rate of the bitstream.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: September 11, 2018
    Assignee: Dolby International AB
    Inventors: Holger Hoerich, Alexander Groeschel, Jens Popp, Marc Roessler, Malte Schmidt
  • Patent number: 10020001
    Abstract: A method for decoding an encoded audio signal is described. The encoded audio signal comprises a sequence of frames, and is indicative of a plurality of different dynamic range control (DRC) profiles for a corresponding plurality of different rendering modes. The method comprises determining a first rendering mode from the plurality of different rendering modes; determining one or more DRC profiles from a subset of DRC profiles comprised within a current frame of the sequence of frames; determining whether at least one of the one or more DRC profiles is applicable to the first rendering mode; selecting a default DRC profile as a current DRC profile, if none of the one or more DRC profiles is applicable to the first rendering mode; wherein definition data of the default DRC profile is known at a decoder; and decoding the current frame using the current DRC profile.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: July 10, 2018
    Assignee: Dolby International AB
    Inventors: Holger Hoerich, Jeroen Koppens
  • Patent number: 9990935
    Abstract: The present document relates to the design of anti-aliasing and/or anti-imaging filters for resamplers using rational resampling factors. In particular, the present document relates to a method for implementing such anti-aliasing and/or anti-imaging filters with reduced computational complexity. In addition, the present document relates to further aspects of an audio encoding and decoding system, such as the phase relation between the channels of a multi-channel audio signal and/or the structure of the bitstream of an encoded audio signal.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 5, 2018
    Assignees: Dolby Laboratories Licensing Corporation, Dolby International AB
    Inventors: Alexander Groeschel, Jens Popp, Martin Wolters, Jeffrey Riedmiller, Michael Ward, Karl Jonas Roeden, Holger Hoerich, Karsten Linzmeier, Tobias Friedrich
  • Patent number: 9818418
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: November 14, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Patent number: 9818417
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: November 14, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Patent number: 9812142
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: November 7, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Patent number: 9792923
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: October 17, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Patent number: 9779746
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: October 3, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Patent number: 9761236
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 12, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Patent number: 9761237
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 12, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Patent number: 9761234
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 12, 2017
    Assignee: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Publication number: 20170249950
    Abstract: A method for decoding an encoded audio signal is described. The encoded audio signal comprises a sequence of frames, and is indicative of a plurality of different dynamic range control (DRC) profiles for a corresponding plurality of different rendering modes. The method comprises determining a first rendering mode from the plurality of different rendering modes; determining one or more DRC profiles from a subset of DRC profiles comprised within a current frame of the sequence of frames; determining whether at least one of the one or more DRC profiles is applicable to the first rendering mode; selecting a default DRC profile as a current DRC profile, if none of the one or more DRC profiles is applicable to the first rendering mode; wherein definition data of the default DRC profile is known at a decoder; and decoding the current frame using the current DRC profile.
    Type: Application
    Filed: September 29, 2015
    Publication date: August 31, 2017
    Applicant: DOLBY INTERNATIONAL AB
    Inventors: Holger HOERICH, Jeroen KOPPENS
  • Publication number: 20170243595
    Abstract: An audio signal (X) is represented by a bitstream (B) segmented into frames. An audio processing system (500) comprises a buffer (510) and a decoding section (520). The buffer joins sets of audio data (D1; D2, . . . , DN) carried by N respective frames (F1, F2, . . . , FN) into one decodable set of audio data (D) corresponding to a first frame rate and to a first number of samples of the audio signal per frame. The frames have a second frame rate corresponding to a second number of samples of the audio signal per frame. The first number of samples is N times the second number of samples. The decoding section decodes the decodable set of audio data into a segment of the audio signal by at least employing signal synthesis, based on the decodable set of audio data, with a stride corresponding to the first number of samples of the audio signal.
    Type: Application
    Filed: October 23, 2015
    Publication date: August 24, 2017
    Applicant: DOLBY INTERNATIONAL AB
    Inventors: Kristofer KJOERLING, Alexander GROESCHEL, Heiko PURNHAGEN, Holger HOERICH, Kurt KRAUSS
  • Publication number: 20170178647
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Publication number: 20170178646
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Publication number: 20170178658
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Publication number: 20170178654
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Publication number: 20170178657
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Publication number: 20170178655
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich
  • Publication number: 20170178656
    Abstract: A method performed in an audio decoder for reconstructing an original audio signal having a lowband portion and a highband portion is disclosed. The method includes receiving an encoded audio signal and extracting reconstruction parameters from the encoded audio signal. The method further includes decoding the encoded audio signal with a core audio decoder to obtain a decoded lowband portion and regenerating the highband portion based at least in part on a cross over frequency and the decoded lowband portion to obtain a regenerated highband portion. The method also includes creating a synthetic sinusoid with a level based at least in part on a spectral envelope value for the particular subband and a noise floor value for the particular subband and adding the synthetic sinusoid to the regenerated highband portion in the particular frequency band specified by the location information.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: Dolby International AB
    Inventors: Kristofer Kjoerling, Per Ekstrand, Holger Hoerich