Patents by Inventor Holger Ruething

Holger Ruething has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11387359
    Abstract: A power semiconductor device having a power semiconductor transistor configuration includes: a semiconductor body having a front side coupled to a first load terminal structure, a backside coupled to a second load terminal structure, and a lateral chip edge; an active region for conducting a load current in a conducting state; and an edge termination region separating the active region and lateral chip edge. At the front-side, the edge termination region includes a protection region devoid of any metallic structure, unless the metallic structure is electrically shielded from below by a polysilicon layer that extends further towards the lateral chip edge than the metallic structure by a lateral distance of at least 20 ?m. In a blocking state, the protection region accommodates a voltage change of at least 90% of a blocking voltage inside the semiconductor body in a lateral direction from the active region towards the lateral chip edge.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 12, 2022
    Assignee: Infineon Technologies AG
    Inventors: Oliver Humbel, Josef-Georg Bauer, Jens Brandenburg, Diana Car, Philipp Sebastian Koch, Angelika Koprowski, Sebastian Kremp, Thomas Kurzmann, Erwin Lercher, Holger Ruething
  • Patent number: 10712208
    Abstract: A semiconductor die includes a single power transistor or power diode, a temperature sense diode formed close enough to the single power transistor or power diode to measure an accurate temperature. The temperature sense diode comprises first and second diodes or strings of diodes. A separate integrated circuit is operable to measure first and second voltage drops of both the first and second diodes or strings of diodes using same magnitude currents, and estimate the temperature of the single power transistor or power diode based on the difference between the first and second forward voltage drop measurements. An overall pn junction area of the first diode or string of first diodes is different from an overall pn junction area of the second diode or string of second diodes.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: July 14, 2020
    Assignee: Infineon Technologies AG
    Inventors: Andreas Kiep, Holger Ruething, Frank Wolter
  • Publication number: 20200194585
    Abstract: A power semiconductor device having a power semiconductor transistor configuration includes: a semiconductor body having a front side coupled to a first load terminal structure, a backside coupled to a second load terminal structure, and a lateral chip edge; an active region for conducting a load current in a conducting state; and an edge termination region separating the active region and lateral chip edge. At the front-side, the edge termination region includes a protection region devoid of any metallic structure, unless the metallic structure is electrically shielded from below by a polysilicon layer that extends further towards the lateral chip edge than the metallic structure by a lateral distance of at least 20 ?m. In a blocking state, the protection region accommodates a voltage change of at least 90% of a blocking voltage inside the semiconductor body in a lateral direction from the active region towards the lateral chip edge.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 18, 2020
    Inventors: Oliver Humbel, Josef-Georg Bauer, Jens Brandenburg, Diana Car, Philipp Sebastian Koch, Angelika Koprowski, Sebastian Kremp, Thomas Kurzmann, Erwin Lercher, Holger Ruething
  • Publication number: 20190025132
    Abstract: A semiconductor die includes a single power transistor or power diode, a temperature sense diode formed close enough to the single power transistor or power diode to measure an accurate temperature. The temperature sense diode comprises first and second diodes or strings of diodes. A separate integrated circuit is operable to measure first and second voltage drops of both the first and second diodes or strings of diodes using same magnitude currents, and estimate the temperature of the single power transistor or power diode based on the difference between the first and second forward voltage drop measurements. An overall pn junction area of the first diode or string of first diodes is different from an overall pn junction area of the second diode or string of second diodes.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Andreas Kiep, Holger Ruething, Frank Wolter
  • Patent number: 10132696
    Abstract: A semiconductor die includes a discrete semiconductor device and at least one diode. The temperature of the discrete semiconductor device is determined by measuring a first forward voltage drop of the at least one diode under a first test condition, measuring a second forward voltage drop of the at least one diode under a second test condition and estimating the temperature of the discrete semiconductor device based on the difference between the first and second forward voltage drop measurements.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: November 20, 2018
    Assignee: Infineon Technologies AG
    Inventors: Andreas Kiep, Holger Ruething, Frank Wolter
  • Patent number: 9543405
    Abstract: A method of manufacturing a reduced free-charge carrier lifetime semiconductor structure includes forming a plurality of transistor gate structures in trenches arranged in a semiconductor substrate, forming a body region between adjacent ones of the transistor gate structures and forming an end-of-range irradiation region between adjacent ones of the transistor gate structures, the end-of-range irradiation region having a plurality of vacancies.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 10, 2017
    Assignee: Infineon Technologies AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Frank Hille, Frank Pfirsch
  • Patent number: 9478613
    Abstract: A semiconductor system for a current sensor in a power semiconductor includes: on a substrate, a multiple arrangement of transistor cells having an insulated gate electrode, whose emitter terminals are connected in a first region via a first conductive layer to at least one output terminal and whose emitter terminals are connected in a second region via a second conductive layer to at least one sensor terminal, which is situated outside of a first cell region boundary, which encloses the transistor cells of the first region and the second region, a trench structure belonging to the first cell region boundary being developed between the transistor cells of the second region and the sensor terminal.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: October 25, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Christian Pluntke, Timm Hoehr, Thomas Jacke, Frank Wolter, Holger Ruething, Guenther Koffler
  • Patent number: 9312334
    Abstract: A semiconductor component is disclosed. One embodiment provides a semiconductor body having a cell region with at least one zone of a first conduction type and at least one zone of a second conduction type in a rear side. A drift zone of the first conduction type in the cell region is provided. The drift zone contains at least one region through which charge carriers flow in an operating mode of the semiconductor component in one polarity and charge carriers do not flow in an operating mode of the semiconductor component in an opposite polarity.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: April 12, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Holger Ruething, Frank Pfirsch, Armin Willmeroth, Frank Hille, Hans-Joachim Schulze
  • Publication number: 20160011058
    Abstract: A semiconductor die includes a discrete semiconductor device and at least one diode. The temperature of the discrete semiconductor device is determined by measuring a first forward voltage drop of the at least one diode under a first test condition, measuring a second forward voltage drop of the at least one diode under a second test condition and estimating the temperature of the discrete semiconductor device based on the difference between the first and second forward voltage drop measurements.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 14, 2016
    Inventors: Andreas Kiep, Holger Ruething, Frank Wolter
  • Publication number: 20150008480
    Abstract: A semiconductor component is disclosed. One embodiment provides a semiconductor body having a cell region with at least one zone of a first conduction type and at least one zone of a second conduction type in a rear side. A drift zone of the first conduction type in the cell region is provided. The drift zone contains at least one region through which charge carriers flow in an operating mode of the semiconductor component in one polarity and charge carriers do not flow in an operating mode of the semiconductor component in an opposite polarity.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Holger Ruething, Frank Pfirsch, Armin Willmeroth, Frank Hille, Hans-Joachim Schulze
  • Patent number: 8860133
    Abstract: A semiconductor component is disclosed. One embodiment provides a semiconductor body having a cell region with at least one zone of a first conduction type and at least one zone of a second conduction type in a rear side. A drift zone of the first conduction type in the cell region is provided. The drift zone contains at least one region through which charge carriers flow in an operating mode of the semiconductor component in one polarity and charge carriers do not flow in an operating mode of the semiconductor component in an opposite polarity.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 14, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Holger Ruething, Frank Pfirsch, Armin Willmeroth, Frank Hille, Hans-Joachim Schulze
  • Publication number: 20140213022
    Abstract: A method of manufacturing a reduced free-charge carrier lifetime semiconductor structure includes forming a plurality of transistor gate structures in trenches arranged in a semiconductor substrate, forming a body region between adjacent ones of the transistor gate structures and forming an end-of-range irradiation region between adjacent ones of the transistor gate structures, the end-of-range irradiation region having a plurality of vacancies.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Inventors: Holger Ruething, Hans-Joachim Schulze, Frank Hille, Frank Pfirsch
  • Patent number: 8478559
    Abstract: One embodiment provides a semiconductor chip including a semiconductor body and a power semiconductor component integrated therein. The power semiconductor component includes a load electrode zone arranged on a first surface of the semiconductor body, a control electrode zone arranged on the first surface, the control electrode zone being electrically insulated from the load electrode zone, and a resistance track arranged on the load electrode zone and the control electrode zone. The resistance track ensures an electrical connection between the load electrode zone and the control electrode zone.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: July 2, 2013
    Assignee: Infineon Technologies AG
    Inventors: Patrick Baginski, Reinhold Bayerer, Holger Ruething, Daniel Domes
  • Patent number: 8344415
    Abstract: A semiconductor component is disclosed. One embodiment provides a semiconductor body having a cell region with at least one zone of a first conduction type and at least one zone of a second conduction type in a rear side. A drift zone of the first conduction type in the cell region is provided. The drift zone contains at least one region through which charge carriers flow in an operating mode of the semiconductor component in one polarity and charge carriers do not flow in an operating mode of the semiconductor component in an opposite polarity.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: January 1, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Holger Ruething, Frank Pfirsch, Armin Willmeroth, Frank Hille, Hans-Joachim Schulze
  • Publication number: 20120175780
    Abstract: One embodiment provides a semiconductor chip including a semiconductor body and a power semiconductor component integrated therein. The power semiconductor component includes a load electrode zone arranged on a first surface of the semiconductor body, a control electrode zone arranged on the first surface, the control electrode zone being electrically insulated from the load electrode zone, and a resistance track arranged on the load electrode zone and the control electrode zone. The resistance track ensures an electrical connection between the load electrode zone and the control electrode zone.
    Type: Application
    Filed: March 19, 2012
    Publication date: July 12, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Patrick Baginski, Reinhold Bayerer, Holger Ruething, Daniel Domes
  • Patent number: 8155916
    Abstract: One embodiment provides a circuit arrangement integrated in a semiconductor body. At least one power semiconductor component integrated in the semiconductor body and having a control connection and a load connection is provided. A resistance component is thermally coupled to the power semiconductor component and likewise integrated into the semiconductor body and arranged between the control connection and the load connection of the power semiconductor component. The resistance component has a temperature-dependent resistance characteristic curve. A driving and evaluation unit is designed to evaluate the current through the resistance component or the voltage drop across the resistance component and provides a temperature signal dependent thereon.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: April 10, 2012
    Assignee: Infineon Technologies AG
    Inventors: Patrick Baginski, Reinhold Bayerer, Holger Ruething, Daniel Domes
  • Patent number: 7932583
    Abstract: According to one embodiment, a semiconductor device comprises a body of a first conductivity type having a source region and a channel, the body being in contact with a top contact layer. The device also comprises a gate arranged adjacent the channel and a drift zone of a second conductivity type arranged between the body and a bottom contact layer. An integrated diode is formed partially by a first zone of the first conductivity type within the body and being in contact with the top contact layer and a second zone of the second conductivity type being in contact with the bottom contact layer. A reduced charge carrier concentration region is formed in the drift zone having a continuously increasing charge carrier lifetime in the vertical direction so that the charge carrier lifetime is lowest near the body and highest near the bottom contact layer.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: April 26, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Frank Hille, Frank Pfirsch
  • Patent number: 7880200
    Abstract: A semiconductor device and production method is disclosed. In one embodiment, the semiconductor device includes a first electrode and a second electrode, located on surfaces of a semiconductor body, and an insulated gate electrode. The semiconductor body has a contact groove for the first electrode in an intermediate oxide layer. Highly doped zones of a first conduction type are located in edge regions of the source connection zone. Below the highly doped zones of the first conduction type, there are highly doped zones of a body zone with a complementary conduction type. In a central region of the source connection zone, the body zone has a net charge carrier concentration with a complementary conduction type which is lower than the charge carrier concentration in the edge regions of the source connection zone.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Hille, Carsten Schaeffer, Frank Pfirsch, Holger Ruething
  • Publication number: 20100117117
    Abstract: According to one embodiment, a power semiconductor device comprises a semiconductor substrate. A transistor gate structure is arranged in a trench formed in the semiconductor substrate. A body region of a first conductivity type is arranged adjacent the transistor gate structure and a first highly-doped region of a second conductivity type is arranged in an upper portion of the body region. A drift zone of the second conductivity type is arranged below the body region and a second highly-doped region of the second conductivity type is arranged below the drift zone. An end-of-range irradiation region is arranged adjacent the transistor gate structure and has a plurality of vacancies. In some embodiments, at least some of the vacancies are occupied by metals.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Frank Hille, Frank Pfirsch
  • Publication number: 20100001785
    Abstract: One embodiment provides a circuit arrangement integrated in a semiconductor body. At least one power semiconductor component integrated in the semiconductor body and having a control connection and a load connection is provided. A resistance component is thermally coupled to the power semiconductor component and likewise integrated into the semiconductor body and arranged between the control connection and the load connection of the power semiconductor component. The resistance component has a temperature-dependent resistance characteristic curve. A driving and evaluation unit is designed to evaluate the current through the resistance component or the voltage drop across the resistance component and provides a temperature signal dependent thereon.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 7, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Patrick Baginski, Reinhold Bayerer, Holger Ruething, Daniel Domes